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Interdisciplinary Laboratory of Social Statistics, Chile

The nonequivalent groups with anchor test (NEAT) design is widely used in test

equating. Under this design, two groups of examinees are administered different

test forms with each test form containing a subset of common items. Because test

takers from different groups are assigned only one test form, missing score data

emerge by design rendering some of the score distributions unavailable. The

partially observed score data formally lead to an identifiability problem, which

has not been recognized as such in the equating literature and has been con-

sidered from different perspectives, all of them making different assumptions in

order to estimate the unidentified score distributions. In this article, we formally

specify the statistical model underlying the NEAT design and unveil the lack of

identifiability of the parameters of interest that compose the equating trans-

formation. We use the theory of partial identification to show alternatives to

traditional practices that have been proposed to identify the score distributions

when conducting equating under the NEAT design.

Keywords: statistical models; strong ignorability; partial identifiability

1. Introduction

Test equating is conducted to adjust the score scales of different test forms in

order to compensate for differences in relative difficulty and thus make scores

equivalent and comparable (Angoff, 1984; Kolen & Brennan, 2014; Lord, 1950).

The equating problem consists in mapping scores defined on one scale into their

Journal of Educational and Behavioral Statistics

Vol. XX, No. X, pp. 1–32

DOI: 10.3102/10769986221090609

Article reuse guidelines: sagepub.com/journals-permissions

© 2022 AERA. https://journals.sagepub.com/home/jeb

1

https://doi.org/10.3102/10769986221090609
https://sagepub.com/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.3102%2F10769986221090609&domain=pdf&date_stamp=2022-04-29


equivalents on the other scale. Such mapping is achieved using what is called an

equating transformation function (for details, see González & Wiberg, 2017, Chap-

ter 1). Although different types of score linkages are distinguished in the literature

(Holland & Dorans, 2006), with equating being a particular case of score linking,

the same linking function can be used in each case (Kolen, 2007) leading to scores

that are interpreted as either interchangeable (equating) or comparable (linking).

Because score differences can also arise due to ability differences of test

takers, comparable groups of examinees must be used when collecting score data

to estimate the equating function. Different strategies for collecting score data

have been proposed in the literature, leading to what are called equating designs

(see, e.g., González & Wiberg, 2017; Kolen & Brennan, 2014; von Davier et al.,

2004). These designs differ in that either common persons or common items are

used to perform the score transformation and in the conditions and assumptions

made to collect the score data. In this article, we will focus the attention on the

nonequivalent groups with anchor test design (NEAT).

The NEAT design (also known as the common item nonequivalent group

design) is widely used in test equating. Under this design, two groups of test

takers are administered different test forms that are intended to measure a com-

mon variable, with each test form containing a subset of common items. Because

test takers from different groups respond to only one test form, missing score data

emerge by design rendering some of the score distributions unavailable. The

partially observed score data formally lead to an identifiability problem, which

has not been recognized as such in the equating literature and has been consid-

ered from different perspectives, all of them making different assumptions in

order to estimate the unidentified score distributions (see, e.g., Holland et al.,

2008; Miyazaki et al., 2009; Sinharay & Holland, 2010).

In this article, we specify the statistical model underlying the NEAT design using

a fully probabilistic approach. By doing so, we not only show that the notion of

synthetic population is meaningless but also offer an alternative formal and useful

conceptualization of it. One of the consequences of this conceptualization is that the

population weights used in the definition of a synthetic population cannot be arbi-

trarily chosen. Moreover, using a partial identification approach (Manski, 2007;

Tamer, 2010), we make explicit the devastating results implied by the identification

problem that are hidden when the missing at random condition is assumed.

This article is organized as follows: In Section 2, current definitions and

assumptions considered when conducting equating under the NEAT design

are revised. Next, we criticize the aspects of the current view on NEAT

equating, make explicit the statement of the problem to be discussed, and

explain the strategy used in the article. In Section 3, the statistical model

underlying the NEAT design is defined and the identifiability problem is

described. In Section 4, we describe two approaches to tackle the identifia-

bility problem and study the impact of the lack of identifiability in the actual

equating using the theory of quantiles. An empirical illustration of the main
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findings is also presented at the end of this section. In the context of score

linking, in Section 5, we discuss alternative identification restrictions leading

to improve the previous results. This article finalizes in Section 6, summariz-

ing the main points and discussing on how severe the identifiability problem

can be in the context of test equating.

2. Modeling Problems Underlying the NEAT Design

In order to show what motivates our critique of the NEAT design, we first

review the basic definitions and strategies given in the literature for estimating

the corresponding equating transformation.

2.1. Equating Under the NEAT Design: A Summary of the Literature

Let X and Y be random variables representing the scores on tests forms X and

Y, respectively. The equating problem is addressed by using an equating function

j : X ! Y, where X and Y are the sets of all possible scores on test forms X and

Y (the score scales), so that for each raw score x, we can compute the corre-

sponding y ¼ jðxÞ (Braun & Holland, 1982; González & Wiberg, 2017). Fol-

lowing Lord (1950) and Angoff (1984), a function j can be defined taking into

account that “two scores, one on Form X and the other on Form Y [. . .] may be

considered equivalent if their corresponding percentile ranks in any given group

are equal” (Angoff, 1984, p. 86). More specifically, the function j : X ! Y is

defined as follows: For each x 2 X , we associate y _¼jðxÞ 2 Y, such that

FY ½jðxÞ� ¼ FX ðxÞ; ð2:1Þ

the symbol _¼ means “defined as.” Although Equation 2.1 can always be solved

using generalized inverses (Embrechts & Hofert, 2013), meaningful equating

results are obtained only when scores are continuous (van der Linden, 2019).

This is why all practical applications of test equating make use of what is called a

continuization step (for details, see Braun & Holland, 1982; González & Wiberg,

2017; Kolen & Brennan, 2014).

Consider now a third random variable, A, which represents the scores obtained

on an anchor test form A. Two definitions of the NEAT design appearing in the

standard literature on equating are the following:

In the Non-Equivalent groups with Anchor Test (NEAT) Design there are two

populations, P and Q, of test-takers and a sample of examinees from each. The

sample from P takes test X, the sample fromQ takes test Y, and both samples take

a set of common items, the anchor test A. (von Davier et al., 2004, p. 32)

For [the NEAT] design, two groups of examinees from different populations are

each administered different test forms that have a set of items in common. (Kolen &

Brennan, 2014, p. 103)
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According to Braun and Holland (1982), the function j should be defined

with respect to a single population. This is a challenging task when performing

equating under the NEAT design as, in fact, two populations, P and Q, are

involved. Consequently, P and Q “must be combined to obtain a single popu-

lation for defining [the] equating function” (Kolen & Brennan, 2014, p. 103),

which leads to introduce a synthetic population, also called target population,

denoted by T . This is done by “conceptualizing a larger population that has P
and Q as two mutually and exhaustive strata” (Braun & Holland, 1982, p. 21), a

“combined group, some of whom would be taking Form X, other taking Form Y,

and all taking Form A, the anchor test” (Angoff, 1987, p. 296), and “a mixture of

both P and Q” (von Davier et al., 2004, p. 34). Each of these statements is

assumed to be represented by the following expression:

T ¼ oP þ ð1� oÞQ; ð2:2Þ

where the populations P and Q are weighted by o 2 ½0; 1� and 1� o, respec-

tively. However, P and Q are just labels denoting the two populations, and thus,

expression 2.2 would represent a “weighted average of labels” which, of course,

does not make any sense. A consequence of using this expression is that the target

score distributions are arbitrarily chosen, as it will be seen in Section 3.

The equating transformation is then typically computed after defining the

score distributions of X, Y, and A on the synthetic population T . Thus, for

instance, for a specific and arbitrary choice of o, the distribution FXT ðxÞ, which

has also been denoted in the literature as PðX � xjT Þ (Sinharay & Holland,

2010; von Davier et al., 2004, p. 7), is obtained by first computing the distribution

of raw scores X for each strata P and Q and then forming weighted averages of

these distributions using o and 1� o, namely

FXT ðxÞ _¼oFXPðxÞ þ ð1� oÞFXQðxÞ: ð2:3Þ

The score distributions FXPðxÞ and FXQðxÞ have been denoted in the literature as

PðX � xjPÞ and PðX � xjQÞ, respectively, with similar notation used for FYT ðyÞ
and FAT ðaÞ. From the data collected under the NEAT design, the distributions

FXPðxÞ, FYQðyÞ, FAPðaÞ, and FAQðaÞmay be computed. Nevertheless, the distribu-

tions FXQðxÞ and FYPðyÞ are not directly estimable. They are typically obtained by

conditioning on the anchor score A and using the following assumptions:

ðiÞ FXPjAðxjaÞ ¼ FXQjAðxjaÞ; ðiiÞ FYPjAðyjaÞ ¼ FYQjAðyjaÞ; ð2:4Þ

where FXPjA is the distribution function of X conditionally on A in P; and the

other distributions have a similar meaning. Under these assumptions, the target

score distributions are given by

ðiÞ FXT ðxÞ ¼ oFXPðxÞ þ ð1� oÞ
X
a2A

FXPjAðxjaÞPðA ¼ ajQÞ;

ðiiÞ FYT ðyÞ ¼ o
X
a2A

FYQjAðyjaÞPðA ¼ ajPÞ þ ð1� oÞFYQðyÞ;
ð2:5Þ
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where A is the set of possible anchor-test scores. These score distributions are

then used to compute jðxÞ for a given x 2 X using the equality

jðxÞ ¼ F�1
YT ½FXT ðxÞ�. This method is called frequency estimation equating (FEE;

Angoff, 1984). Other methods used for equating under the NEAT design, such

as the chained equipercentile equating and item response theory-observed score

equating (IRT-OSE), together with the assumptions needed in each case to obtain

the distributions that are not directly estimable are described in Sinharay and

Holland (2010).

2.2. What We Question: A Statement of the Problem

From a modeling point of view, equating under the NEAT design depends on

both the synthetic population (2.2) and the assumptions in (2.4), which are

typically known as the missing-at-random assumptions (Liou & Cheng, 1995;

Miyazaki et al., 2009; Sinharay & Holland, 2010). Bearing in mind that the

equating function is defined in probabilistic terms, the following questions arise:

1. Taking into account that P andQ are not random variables but mere labels, under

which conditions are PðX � xjPÞ and PðX � xjQÞ properly understood as con-

ditional probability functions?

2. If such conditions exist, would it be possible to define the concept of a synthetic

population in probabilistic terms?

3. Is it possible to provide alternative assumptions to the ones given in (2.4) to solve

the problem of missing score data underlying the NEAT design? If so, what would

be the impact of such alternative assumptions on the NEAT design in specific

contexts?

The answers to the previous questions depend on the answer to a more fun-

damental one: How can “an understanding of the way in which the data” col-

lected under the NEAT design “are supposed to, or did in fact, originate” be

obtained (Fisher, 1973, p. 8)? This question can be answered once the parameters

of interest that “describe [the observations] exhaustively in respect of all qualities

under discussion” (Fisher, 1922, p. 311) are made explicit. Nevertheless, the data

generating process is not necessarily characterized by the parameters of interest.

When this is the case, we face an identifiability problem. This is the problem we

will unveil in the NEAT design.

3. Statistical Specification of the NEAT Design and the Inherent

Identification Problem

One way to answer these questions is to follow González and Wiberg’s (2017)

perspective, which consists in specifying the NEAT design as a statistical model.

This means to make explicit the following three components:
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1. The sample space ðM ;MÞ, where M contains the elementary events and M is a

class containing the events of interest and their combinations through unions of

sets as well as complement of a set—this is why M is a s-field of subsets of M.

The pair ðM ;MÞ is technically called a measurable space.

2. The sampling probabilities Pg, indexed by a parameter g, where each Pg is defined

on ðM ;MÞ.
3. The parameter space G, which represents the set of all plausible values of g.

For details, see San Martı́n et al. (2015) and references therein.

What are the practical advantages of this formalism? First, the population of

interest is made explicit by listing it through the elements of the sample space.

Second, features of the population under study are fully characterized by the

parameters indexing the sampling probabilities. Third, this formalism allows us

to evaluate whether certain characteristics relevant to researchers can indeed be

represented as (a function of) parameters: When this is not the case, then we face

an identification problem (Koopmans, 1949).

The specification of the statistical model underlying the NEAT design will be

performed in a sequential way, which leads to decompose the joint probability

distribution defined on all the pertinent random variables into specific condi-

tional submodels. The sequential specification makes explicit the way in which

the data are (supposed to be) generated (Wunsch et al., 2014). This sequential

specification is critically based on the Law of Total Probability in the sense that it

ensures the existence of the conditional distribution of a new random variable

given the previously introduced variables. This corresponds to the formal defi-

nition of a conditional probability function as introduced by Kolmogorov (1950,

§6). By doing so, it will be made explicit which are the parameters of the

statistical model and the lack of identifiability of the parameters of interest.

3.1. The Sample Space in the NEAT Design

In order to construct both the random variables and the probability distribu-

tions underlying the NEAT design, it is necessary to make explicit the sample

space M. In the case of the NEAT design, M corresponds to the union of the index

sets labeling the two mutually exclusive groups of examinees who were exposed

to the test forms X and Y, namely

M ¼ P [Q; where P ¼ fi1; . . . ; inP g; Q ¼ f j1; . . . ; jnQg; P \ Q ¼:;

where nP and nQ are the total number of examinees exposed to test forms X and

Y, respectively. Thus, M corresponds to the population of interest underlying the

NEAT design. Since it is a finite set, the class M of events of interest corre-

sponds to the class of subsets of M.
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3.2. The Random Variable Z

All the random variables underlying the NEAT design should be defined from

M to a set of possible values. In addition to the variables representing the test

scores, namely, X ; Y ; and A, we construct a random variable representing the

groups underlying the NEAT design. To do so, remember that, by definition, given

two measurable spaces ðM ;MÞ and ðN ;NÞ, a function f : M ! N is a random

variable if f �1ðBÞ 2 M for all B 2 N (Karr, 1993; Kolmogorov, 1950). In the

finite discrete case, as it is in the NEAT design, this formal definition reduces to the

following characterization: A mapping of the set M into a set of values is a random

variable if and only if the mapping induces a partition of M. For instance, for the

case when P ¼ fi1; i2; i3g and Q ¼ f j1; j2; j3; j4; j5g, consider the toy data set

shown in Table 1. If A : M ! A _¼f0; 1; 2; 3g is a random variable representing

the scores obtained in an anchor test of three items, then A�1f0g ¼ f j4g;A�1f1g ¼
fi2; j3g;A�1f2g ¼ fi1; i3; j5g and A�1f3g ¼ f j1; j2g. These sets belong to M
and constitute a partition of M.

This characterization is relevant for at least two reasons: First, different

examinees with equal values on a random variable will be treated as equivalent

and put in the same equivalence class (i.e., the members of the partition) of

examinees. Second, a random variable is the class of events in M (in the finite

case, subsets of M) that is induced by the possible values the random variable can

take (Florens & Mouchart, 1982), which means that all information provided by a

random variable is captured in the sample space ðM ;MÞ.
The sample space M has been defined through the partition fP;Qg, which

implies that a binary random variable Z can naturally be defined as

Z ¼
1; if the examenee belongs to group P;
0; if the examenee belongs to group Q:

�
ð3:1Þ

TABLE 1.

Toy Data Set Example

M X Y A Z

i1 1 — 2 1

i2 4 — 1 1

i3 3 — 2 1

j1 — 1 3 0

j2 — 5 3 0

j3 — 5 1 0

j4 — 2 0 0

j5 — 0 2 0
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That is, the preimage Z�1f1g corresponds to the event P and the preimage

Z�1f0g to the event Q: This is the semantic meaning of Z.

A natural first approach to construct a probability function of Z would be

thinking in terms of experimental units (the members of the sample space M) and

a random mechanism that assigns numbers to the experimental units, as, for

instance, scores or measurements (Lord & Novick, 1968, Sections 1.3 and

2.2). Under this perspective, the groups P and Q could be viewed as

“realizations” or “occurrences” of such a mechanism. However, using Little and

Rubin’s (1994) terminology, the groups P and Q in the NEAT design are con-

sidered as selected samples and, consequently, subject to selection bias. Thus,

this approach is not useful to reveal some random assignment mechanism that

makes sense of Z in the NEAT design.

Nevertheless, it is possible to propose an alternative approach that suits better

the characteristics of the NEAT design. To do so, we resort to Carnap’s (1962,

§12) distinction between what a researcher says about a term in his formulation

(semantics) and what he actually does with that term in the corpus of his for-

mulation (syntax): the sense of a certain term is revealed from its use in formal

arguments. Taking into account that, from an axiomatic perspective, “random”

and “realization” or “occurrence” are mere terms, not probabilistic concepts

(see Kolmogorov [1950, p. 2] and Itô [1984, pp. 1, 3], respectively), an axioma-

tically well-defined probability function of Z can be defined as follows: When

M ¼ fm1; . . . ;mkg is a finite set, it is enough to take an arbitrary set of non-

negative numbers fp1; . . . ; pkg with their sum equal to 1, such that Pfmig ¼ pi

for i ¼ 1; . . . ; k (Kolmogorov, 1950, p. 3). Consequently, a possible probability

function of Z can accordingly be constructed by considering the relative sizes of

the groups P and Q (Braun & Holland, 1982), namely

PðZ ¼ 1Þ ¼ nP
nP þ nQ

; PðZ ¼ 0Þ ¼ nQ
nP þ nQ

: ð3:2Þ

Under this approach, both P and Q are viewed as constituting the population

of interest rather than realizations from some sampling mechanism (see Manski,

2013, p. 126). This is due to the fact that we focus our attention on the identi-

fication problem underlying the NEAT design, which will be the same regardless

of the type of sampling process it is reasonable to assume (see also Manski &

Nagin, 1998, specially p .109). It is in fact possible to specify a different prob-

ability function for Z, but its identifiability should be justified, as it is the case for

the one defined in Equation 3.2. Furthermore, in the identification analysis that

will follow, the role played by the random variable Z is only through the prob-

ability function that is defined on it.

For its semantic meaning, the partition of M induced by Z can be interpreted as

a “sample by specification” (Lord & Novick, 1968, Section 2.5), thus avoiding

the idea of a possible random assignment mechanism. In any case, we define a

“random assignment mechanism” in terms of “absence of bias,” which in turn is
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rigorously described in terms of conditional probabilities (for details, see Supple-

mental Appendix A). This definition is actually motivated by a semantic rela-

tionship between both notions (Bhide et al., 2018; Odgaard-Jensen et al., 2011;

Stephenson & Imrie, 1998). To the best of our knowledge, no formal proof exists

deriving “absence of bias” from “random assignment” precisely because this last

notion is not a probabilistic concept. As it will be seen in what follows, the

identification problem arises from the selection bias inherent to the NEAT

design, which formally means that PðX � xjA; Z ¼ 1Þ 6¼ PðX � xjA; Z ¼ 0Þ and

PðY � yjA; Z ¼ 1Þ 6¼ PðY � yjA; Z ¼ 0Þ. Before discussing this aspect, let us

follow through the sequential specification of the NEAT design.

3.3. The Anchor Random Variable A

Once Z has been specified, we introduce a random variable A defined from M

into the set A of possible scores in the anchor test. Following the sequential

specification strategy, the existence of the conditional probability of A given Z is

ensured by the following representation: for all a 2 A
PðA ¼ aÞ ¼ PðA ¼ ajZ ¼ 1ÞPðZ ¼ 1Þ þ PðA ¼ ajZ ¼ 0ÞPðZ ¼ 0Þ;

¼ E½PðA ¼ ajZ¼ 1Þ1fZ¼1g þ PðA ¼ ajZ¼ 0Þ1fZ¼0g�;

¼ E½PðA ¼ ajZÞ�: ð3:3Þ

It should be remarked that the existence of the conditional probability function

PðA ¼ ajZÞ depends on Z through the partition on M induced by it. Because

both numbers PðA ¼ ajZ ¼ 1Þ and PðA ¼ ajZ ¼ 0Þ can be computed from

the data generated by the sampling process, we conclude that, for each a 2 A,

PðA ¼ ajZÞ are identified parameters and, consequently, the joint distribution

PðA ¼ a; Z ¼ zÞ for ða; zÞ 2 A � f0; 1g is identified. Note that these statements

do not depend on specific values of the probabilities PðZ ¼ 1Þ and PðZ ¼ 0Þ, but

only on the fact that Z is well defined and can be endowed with a probability

distribution. Finally, it can be verified that A and Z are not independent by

construction. For instance, for a 2 A
PðZ ¼ 1;A ¼ aÞ _¼P½Z�1f1g \ A�1fag� ¼ Pfm 2 P : AðmÞ ¼ ag 6¼ PðZ ¼ 1ÞPðA ¼ aÞ:

3.4. The Random Variables X and Y

Once ðA; ZÞ has been specified, we introduce two random variables X and Y

defined from M intoX and Y, respectively. As discussed previously, the equating

function depends on two probability distributions, namely, FX ðxÞ ¼ PðX � xÞ
for all x 2 X and FY ðyÞ ¼ PðY � yÞ for all y 2 Y: These are actually the para-

meters of interest. However, these parameters are not identified because it is not

possible to construct the respective conditional distributions PðX � xjA; ZÞ and
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PðY � yjA; ZÞ. As a matter of fact, the marginal distribution PðX � xÞ can only

be obtained once PðX � xjAÞ is obtained, which in turn is defined through the

following representation: for all x 2 X
PðX � xjAÞ ¼ PðX � xjA; Z ¼ 1ÞPðZ ¼ 1jAÞ þ PðX � xjA; Z ¼ 0ÞPðZ ¼ 0jAÞ;

¼ E½PðX � xjA; Z¼ 1Þ1fZ¼1g þ PðX � xjA; Z¼ 0Þ1fZ¼0gjA�;

¼ E½PðX � xjA; ZÞjA�: ð3:4Þ

In this representation, the function PðX � xjA; Z ¼ 0Þ is not identified

because it is impossible to determine from the sampling process the event

X�1fxg \ Z�1f0g � M , that is, it is not observed which examinees exposed to

test form Y would have obtained a score equal to x in test form X. This makes

explicit the underlying selection bias problem according to which

PðX � xjA; Z ¼ 1Þ 6¼ PðX � xjA; Z ¼ 0Þ.
The nonidentifiability of PðX � xÞ immediately follows: for all x 2 X

FX ðxÞ _¼PðX � xÞ ¼ PðX � xjZ ¼ 1ÞPðZ ¼ 1Þ þ PðX � xjZ ¼ 0ÞPðZ ¼ 0Þ;

¼ E½PðX � xjZÞ�;

¼ E½E½PðX � xjA; ZÞ�jA�;

¼by ð3:4Þ
E½PðX � xjAÞ�: ð3:5Þ

By similar arguments, in the following representation, for y 2 Y
PðY � yjAÞ ¼ PðY � yjA; Z ¼ 1ÞPðZ ¼ 1jAÞ þ PðY � yjA; Z ¼ 0ÞPðZ ¼ 0jAÞ;

¼ E½PðY � yjA; Z¼ 1Þ1fZ¼1g þ PðY � yjA; Z¼ 0Þ1fZ¼0gjA�;

¼ E½PðY � yjA; ZÞjA�: ð3:6Þ

The function PðY � yjA; Z ¼ 1Þ is not identified because it is impossible to

determine from the sampling process the event Y�1fyg \ Z�1f1g � M , that is, it

is not observed which examinees exposed to test form X would have obtained a

score equal to y in test form Y. This makes explicit the underlying selection bias

problem according to which PðY � yjA;Z ¼ 1Þ 6¼ PðY � yjA; Z ¼ 0Þ. There-

fore, PðY � yÞ is not identified because, for all y 2 Y
FY ðyÞ _¼PðY � yÞ ¼ PðY � yjZ ¼ 1ÞPðZ ¼ 1Þ þ PðY � yjZ ¼ 0ÞPðZ ¼ 0Þ;

¼ E½PðY � yjZÞ�;

¼ E½E½PðY � yjA; ZÞ�jA�;

¼by ð3:6Þ
E½PðY � yjAÞ�: ð3:7Þ
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Summarizing, the statistical model in the NEAT design can be written as

ðM ;MÞ : ðFX ;FY Þ 2 F ðM ;MÞf g, where F ðM ;MÞ denotes the space of

probability distributions defined on ðM ;MÞ. The type of data that can be ana-

lyzed under the NEAT design is characterized by the sequential specification

developed above.

3.5. Consequences of the Model Specification

The previous specification deserves several comments. First, one might ask

what is the role of the anchor test in the previous identification analysis? More

precisely, why it is necessary to use the conditional distribution PðX � xjA; ZÞ
(see Equation 3.4) to establish the nonidentifiability of PðX � xÞ, instead of

establishing it using PðX � xjZÞ directly (see Equation 3.5, last line)? In fact,

the nonidentifiability of both PðX � xÞ and PðY � yÞ follows after marginalizing

Z. However, we will show that the anchor test A is useful for introducing iden-

tification restrictions leading to either point-identify or partially identify them.

Furthermore, the sampling process characterizing the NEAT design identifies

PðA ¼ a; Z ¼ zÞ; PðX � xjA; Z ¼ 1Þ; PðY � yjA; Z ¼ 0Þ;

for all ðz; a; x; yÞ 2 f0; 1g � A � X � Y. These distributions cannot be obtained

from

PðA ¼ a; Z ¼ zÞ; PðX � xjZ ¼ 1Þ; PðY � yjZ ¼ 0Þ;

for all ðz; a; x; yÞ 2 f0; 1g � A � X � Y: It is necessary to make explicit the

dependency between X and A for fZ ¼ 1g and between Y and A for fZ ¼ 0g.
Second, an advantage of this fully probabilistic specification of the NEAT

design is to show that the term synthetic population is useless. As a matter of fact,

the population of interest underlying the NEAT design is given by M ¼ P [ Q:

Once this is made explicit, all the necessary random variables can explicitly be

defined. Moreover, the score distributions PðX � xÞ and PðY � yÞ are decom-

posed in a unique way through the representations 3.5 and 3.7. In these decom-

positions, PðZ ¼ 1Þ is an identified parameter of the statistical model that, once it

is fixed (for instance, through Equation 3.2), cannot be modified arbitrarily as

suggested by Braun and Holland (1982), Brennan and Kolen (1987), and Kolen

and Brennan (2014, Section 4.5.2), among many others. Therefore, the “target

score distribution” used in the equating literature does not always coincide with

PðX � xÞ as decomposed in Equation 3.5, except when o ¼ PðZ ¼ 1Þ. In other

words, the existence of the target score distribution is not well established.

4. Approaches to Tackle the Identification Problem

In this section, we discuss two different approaches to tackle the identification

problem underlying the NEAT design. The first one is based on a missing-at-

random condition, widely used in the equating literature. In order to grasp how
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strong such a condition is, we consider a second approach to the identification

problem based on the theory of partial identification. The theoretical results are

illustrated with a well-known data set appearing in the literature (Kolen & Bren-

nan, 2014).

4.1. Strong Ignorability Condition

In the equating literature, the lack of identifiability of the marginal distribu-

tions FX and FY has been considered as a missing data problem (see, among many

others, Bolsinova & Maris, 2016; Liou, 1998; Liou & Cheng, 1995; Sinharay &

Holland, 2010). As we have seen in Section 2.1, the problem is typically solved

assuming that the anchor scores are informative enough such that FX jZ¼1;AðxÞ ¼
FX jZ¼0;AðxÞ for all x 2 X and FY jZ¼1;A ¼ FY jZ¼0;A for all y 2 Y, which corre-

sponds to

ðiÞ X vZjA; ðiiÞ Y vZjA; ð4:1Þ

see Braun and Holland (1982), Kolen and Brennan (2014), von Davier et al.

(2004), and González and Wiberg (2017). Here, UvV jW denotes the condi-

tional independence of U and V given W (for details, see Florens et al., 1990,

Chapter 2). Note that condition 4.1 is equivalent to the assertion of absence of

bias. For details, see Supplemental Appendix A.

In the econometric literature, this condition is known as the switching condi-

tion (Maddala, 1983), whereas in the causal inference literature, it is known as

the strong ignorability condition (Rosenbaum & Rubin, 1983). Condition 4.1 is

not empirically refutable (Manski, 2007), but only justified in a specific appli-

cation. Such justification could lead to answer affirmatively to the following

question: Are we ready to believe that, conditionally on A, the score distribution

of the examinees taking test form X would be the same as if they were exposed to

test form Y?

What is important to emphasize is that condition 4.1 is an identification

restriction allowing to identify FX jA and FY jA and, by extension, FX and FY. As

a matter of fact, under condition 4.1, decompositions 3.4 and 3.6 imply that

FX jAðxÞ ¼ FX jZ¼1;AðxÞ for all x 2 X and that FY jAðyÞ ¼ FY jZ¼0;AðyÞ for all

y 2 Y; and therefore

ðiÞ FX ðxÞ ¼
X
a2A

PðX � xjZ ¼ 1;A ¼ aÞPðA ¼ aÞ 8x 2 X ;

ðiiÞ FY ðyÞ ¼
X
a2A

PðY � yjZ ¼ 0;A ¼ aÞPðA ¼ aÞ 8y 2 Y:
ð4:2Þ

The equating function can thus be obtained using Equation 4.2, which is

equivalent to Equation 2.5 provided that o ¼ PðZ ¼ 1Þ; for a proof, see Supple-

mental Appendix B. Thus, the strong ignorability condition 4.1 is simply an

identification restriction that leads to being able to identify FX jA and FY jA, which
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in turn implies the identifiability of the parameters of interest FX and FY. Now,

the question is: How strong is the condition (4.1)? The remainder of this article is

focused in answering this question.

4.2. Partial Identification Analysis

A natural starting point is to see what the data alone reveal about FX jA and

FY jA. This can be done by means of a partial identification strategy, widely used

in empirical research (see, e.g., Blundell et al., 2007; Gundersen & Kreider,

2009; Molinari, 2010; Pepper, 2000).

In comparison with the traditional concept of identifiability that gives a binary

status for the parameters of interest in a statistical model, namely, either identi-

fied or not, partial identification is an approach that recognizes that identification

is not an all-or-nothing concept and that models that do not identify parameters of

interest can, and typically do, contain valuable information about these para-

meters (Tamer, 2010). Following Manski (2007), a parameter is partially iden-

tified if the sampling process and maintained assumptions reveal that the

parameter lies in a set, its “identification region,” that is smaller than the logical

range of the parameter but larger than a single point. In this sense, the smaller

(larger) the identification region is, the larger (smaller) the information we have

about the parameter.

4.2.1. Partial identification of the parameters of interest. In order to make expli-

cit what the data alone reveal about FX jA, it is enough to use that the unidentified

conditional probability distribution FX jZ¼0;A lies between 0 and 1. Decomposi-

tion 3.4 implies, therefore, that the conditional probability FX jA lies in the interval

FX jZ¼1;AðxÞPðZ ¼ 1jAÞ � FX jAðxÞ � FX jZ¼1;AðxÞPðZ ¼ 1jAÞ þ PðZ ¼ 0jAÞ; ð4:3Þ

for all x 2 X . Similarly, FY jZ¼1;A lies between 0 and 1 and, therefore, decom-

position 3.6 implies that the conditional probability FY jA lies in the interval

FY jZ¼0;AðyÞPðZ ¼ 0jAÞ � FY jAðyÞ � FY jZ¼1;AðyÞPðZ ¼ 0jAÞ þ PðZ ¼ 1jAÞ; ð4:4Þ

for all y 2 Y. After marginalizing with respect to A, these inequalities provide the

partial identification intervals of the parameters of interest, which is summarized

in the following theorem:

Theorem 4.1: In the NEAT design, the parameters of interest FX and FY are

partially identified by the following identification intervals:

ðiÞ FX jZ¼1ðxÞPðZ ¼ 1Þ � FX ðxÞ � FX jZ¼1ðxÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ; x 2 X ;

ðiiÞ FY jZ¼0ðyÞPðZ ¼ 0Þ � FY ðyÞ � FY jZ¼0ðyÞPðZ ¼ 0Þ þ PðZ ¼ 1Þ; y 2 Y:
ð4:5Þ

Let us comment on some important consequences of this theorem. First, the

partial identification of FX and FY can be directly obtained using decompositions
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3.5 and 3.7. However, the partial identification intervals 4.3 and 4.4 will be useful

in Section 5 to obtain a more informative identification region.

Second, the partial identification intervals (Equations 4.5.i and 4.5.ii) do not

depend on any assumption; they accordingly provide all the plausible values of FX

and FY coherent with the data and the probabilities identified by them. In particular,

the solution given in Equation 4.2 is a plausible one (see Figure 1). It should be

stressed that other solutions of the type 2.5, as the ones suggested in the literature

where o 6¼ PðZ ¼ 1Þ, are not plausible solutions because some of the components

are not based on the identified parameters underlying the NEAT design.

Third, the width of interval (Equation 4.5.i) is PðZ ¼ 0Þ, whereas the width of

interval (Equation 4.5.ii) is PðZ ¼ 1Þ. Taking into account that

PðZ ¼ 0Þ þ PðZ ¼ 1Þ ¼ 1, the longer one interval is, the shorter the other. This

trade-off—which is valid even if PðZ ¼ 1Þ and PðZ ¼ 0Þ do not correspond to

the relative weight sizes of both groups—shows how strong the ignorability

condition is: FX ðxÞ with x 2 X (respect., FY ðyÞ with y 2 Y) belongs to an iden-

tification interval of width PðZ ¼ 0Þ (respect., PðZ ¼ 1Þ), which under the ignor-

ability condition collapses to a point, namely, FX jZ¼1ðxÞ (respect., FY jZ¼0ðyÞ).
The degree of information that the ignorability condition hides can be precisely

quantified: It corresponds to PðZ ¼ 1Þ and PðZ ¼ 0Þ, which cannot be arbitrarily

manipulated once the groups of examinees have responded the tests. Figure 1

shows this trade-off graphically.

Fourth, the larger the partial identification intervals, the lesser is the informa-

tion on the unidentified score distributions used to compute the equating func-

tion. It could be argued that smaller identification intervals can be obtained

simultaneously for both score distributions by conditioning on the anchor scores

A. This is in fact one of the ways in which the strong ignorability condition is

motivated, namely, that A is so informative that allows us to ignore Z. However,

this is not the case. It is enough to compare the width of the conditional partial

identification intervals (Equations 4.3 and 4.4) with the intervals (Equations 4.5.i

and 4.5.ii), respectively. For each a 2 A, we consider the following cases:

ðiÞ PðZ ¼ 1Þ > PðZ ¼ 1jA ¼ aÞ , PðZ ¼ 0Þ < PðZ ¼ 0jA ¼ aÞ;
ðiiÞ PðZ ¼ 1Þ < PðZ ¼ 1jA ¼ aÞ , PðZ ¼ 0Þ > PðZ ¼ 0jA ¼ aÞ : ð4:6Þ

It can be seen that after conditioning on A, the identification interval for FY is

indeed smaller but the one for FX turns to be larger in Case (i). Likewise in Case

(ii), the identification interval for FX is smaller but the one for FY is larger. Thus,

it is not possible to reduce simultaneously the width of the identification intervals

by conditioning on A. Note that these conditions are empirically testable. Figure 2

shows a graphical representation of these comparisons.

4.2.2. Partial identification of the quantiles. The impact of the lack of identifia-

bility of FX and FY, and the amount of information that can be obtained from a
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partial identifiability approach on the actual equating, may be studied by analyzing

the quantile functions involved in the process. In fact, the equating function actually

equates the quantiles of the score distributions FX and FY (see Section 2.1).

Let a 2 ð0; 1Þ. Taking as a starting point the identifiability bounds in Equa-

tion 4.5, we define the following quantiles functions:

qX ðaÞ _¼ infft : FX ðtÞ > ag;
rX ðaÞ _¼ infft : FX jZ¼1ðtÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ > ag;
sX ðaÞ _¼ infft : FX jZ¼1ðtÞPðZ ¼ 1Þ > ag:

Note that rX ðaÞ and sX ðaÞ are identified, whereas qX ðaÞ is unidentified. The

aim is thus to partially identify qX ðaÞ using both rX ðaÞ and sX ðaÞ. To do that, we

establish the following relationships using Equation 4.5.i: let t < rX ðaÞ, it fol-

lows that FX jZ¼1ðtÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ < a, which in turn implies that
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FIGURE 1. Identifiability bounds for different relative sizes.
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FX ðtÞ < a and, therefore, qX ðaÞ > t. It follows that rX ðaÞ < qX ðaÞ: if not, take

t ¼ qX ðaÞ and conclude that FX ½qX ðaÞ� < a, which is a contradiction with the

definition of qX ðaÞ.
On the other hand, let t � sX ðaÞ, it follows that FX jZ¼1ðtÞPðZ ¼ 1Þ > a,

which implies FX ðtÞ � a, which in turn implies that qX ðaÞ � t. It follows that

qX ðaÞ � sX ðaÞ because a=PðZ ¼ 1Þ � a.

Similarly, for a 2 ½0; 1�, we define the quantiles:

qY ðaÞ _¼ infft : FY ðtÞ > ag;
rY ðaÞ _¼ infft : FY jZ¼0ðtÞPðZ ¼ 0Þ þ PðZ ¼ 1Þ > ag;
sY ðaÞ _¼ infft : FY jZ¼0ðtÞPðZ ¼ 0Þ > ag:

By using Equation 4.5.ii, a similar argument leads to conclude that

rY ðaÞ � qY ðaÞ � sY ðaÞ. Summarizing, we obtain the following theorem:

Theorem 4.2: In the NEAT design, the quantiles of the partially identified

probability distributions FX and FY are partially identified by the following

intervals:

ðiÞ rX ðaÞ � qX ðaÞ � sX ðaÞ; ðiiÞ rY ðaÞ � qY ðaÞ � sY ðaÞ: ð4:7Þ

In what follows, we give some comments on Theorem 4.2 that highlight

relevant aspects that can be learned from what the data are able to identify and

to show how severe is the identification problem underlying the NEAT design.

Although the analyses are valid for any identified specification of PðZ ¼ zÞ,
z 2 f0; 1g, throughout the exposition, we assume the specification given in

Equation 3.2.

In order to describe both the lower and upper bounds of the quantiles qX ðaÞ
and qY ðaÞ as a function of the relative sizes of groups P and Q, we introduce
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FIGURE 2. Identifiability bounds for conditional score distributions.
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additional notation: let SðX jZ¼1Þ and SðY jZ¼0Þ be the supports of the conditional

distributions FX jZ¼1 and FY jZ¼0, respectively. Let tX jZ¼1
m _¼minft : t 2 SðX jZ¼1Þg

and t
X jZ¼1
M _¼maxft : t 2 SðX jZ¼1Þg, similarly for tY jZ¼0

m and t
Y jZ¼0
M . The lower and

upper bounds of qX ðaÞ can be expressed as quantiles of the conditional distri-

bution FX jZ¼1, namely

rX ða�Þ ¼ inf t : FX jZ¼1ðtÞ >
a� PðZ ¼ 0Þ

PðZ ¼ 1Þ

� �
¼ qX jZ¼1

a� PðZ ¼ 0Þ
PðZ ¼ 1Þ

� �
;

sX ða�Þ ¼ inf t : FX jZ¼1ðtÞ > a
PðZ ¼ 1Þ

� �
¼ qX jZ¼1

a
PðZ ¼ 1Þ

� �
;

where a� 2 ð0; 1Þ is the percentage of the observations lying below t and it

depends on the relative sizes of groups P and Q. Similarly, the lower and upper

bounds of qY ðaÞ can be expressed as quantiles of the conditional distribution

FY jZ¼0, namely

rY ða�Þ ¼ inf t : FY jZ¼0ðtÞ >
a� PðZ ¼ 1Þ

PðZ ¼ 0Þ

� �
¼ qY jZ¼0

a� PðZ ¼ 1Þ
PðZ ¼ 0Þ

� �
;

sY ða�Þ ¼ inf t : FY jZ¼0ðtÞ > a
PðZ ¼ 0Þ

� �
¼ qY jZ¼0

a
PðZ ¼ 0Þ

� �
:

Because these quantiles depend on the group’s relative sizes, three cases can

be distinguished, namely, PðZ ¼ 1Þ < PðZ ¼ 0Þ, PðZ ¼ 1Þ > PðZ ¼ 0Þ, and

PðZ ¼ 1Þ ¼ PðZ ¼ 0Þ. Tables 2 through 4 show the corresponding upper and

lower bounds for each of these cases, respectively. The identification regions

shown in these tables make explicit how severe is the nonuniqueness of the

equated values due to the identification problem inherent to the NEAT design.

Figure 3 complements the information given in these tables showing plots of the

quantile functions in each case. We comment on the uniqueness issue by making

reference to Table 2, focusing attention on the role of the relative sizes of groups

P and Q.

Interval 1: Let a 2 ½0;PðZ ¼ 1Þ�. Suppose that FX jZ¼1 stochastically dom-

inates FY jZ¼0, that is, FX jZ¼1ðtÞ � FY jZ¼0ðtÞ for all t 2 W ¼ X \ Y. This implies

that SðY jZ¼0Þ 	 SðX jZ¼1Þ. Given that the quantile function respects the stochastic

dominance (see, e.g., Stoye, 2010), it follows that

qY jZ¼0
a

PðZ ¼ 0Þ

� �
� qX jZ¼1

a
PðZ ¼ 0Þ

� �
: ð4:8Þ

Because PðZ ¼ 1Þ < PðZ ¼ 0Þ, it holds that a=PðZ ¼ 0Þ < a=PðZ ¼ 1Þ and

sY ða�Þ ¼ qY jZ¼0
a

PðZ ¼ 0Þ

� �
� qX jZ¼1

a
PðZ ¼ 0Þ

� �
;
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� qX jZ¼1
a

PðZ ¼ 1Þ

� �
¼ sX ða�Þ;

(see Figure 3a). If for simplicity we also assume that tX jZ¼1
m ¼ tY jZ¼0

m , equating

a X-score to a Y-score would lead to shrunk values of the X-scores. Notice that in
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FIGURE 3. Identifiability bounds of quantiles for different relative sizes.

TABLE 4.

Lower and Upper Bounds for qXðaÞ and qYðaÞ When PðZ ¼ 1Þ ¼ PðZ ¼ 0Þ

a rX ða�Þ sX ða�Þ rY ða�Þ sY ða�Þ

0; 1
2

� 	
tX jZ¼1
m qX jZ¼1ð2aÞ tY jZ¼0

m qY jZ¼0ð2aÞ
1
2
; 1

� 

qX jZ¼1ð2a� 1Þ t

X jZ¼1
M qY jZ¼0ð2a� 1Þ t

Y jZ¼0
M
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this case, no explicit order between rX ða�Þ and rY ða�Þ can be established (see

Figure 3d).

Remark 4.1: The stochastic dominance assumption is only meaningful in the

context of equating where the test forms to be equated might be assembled as

parallel as possible, which leads to score distributions with common supports.

Nevertheless, the same argument follows if instead of assuming the stochastic

dominance we assume the quantile inequality (Equation 4.8). By doing so, the

conclusions are also valid in a less restricted linking context as can be seen in van

der Linden (2019, p. 427).

Interval 2: If a 2 ðPðZ ¼ 1Þ;PðZ ¼ 0ÞÞ, qX ða�Þ is partially identified on

ðrX ða�Þ; sX ða�ÞÞ ¼ SðX jZ¼1Þ, and thus, no bounded information is obtained to

learn about it. On the other hand, qY ða�Þ provides information characterized

by the respective identification interval. As a consequence, Y-scores on the

interval ðrY ða�Þ; sY ða�ÞÞ would be considered equivalent to all possible X-scores

(see Figure 3a).

Interval 3: Let a 2 ½PðZ ¼ 0Þ; 1�. Suppose now that FY jZ¼0 stochastically

dominates FX jZ¼1, that is, FY jZ¼0ðtÞ � FX jZ¼1ðtÞ for all t 2 W ¼ X \ Y, which

implies that SðX jZ¼1Þ 	 SðY jZ¼0Þ. It follows that

qX jZ¼1

a� PðZ ¼ 0Þ
PðZ ¼ 1Þ

� �
� qY jZ¼0

a� PðZ ¼ 0Þ
PðZ ¼ 1Þ

� �
:

But PðZ ¼ 1Þ < PðZ ¼ 0Þ, so ½a� PðZ ¼ 1Þ�=PðZ ¼ 0Þ > ½a� PðZ ¼ 0Þ�
=PðZ ¼ 1Þ. It follows that

rX ða�Þ ¼ qX jZ¼1

a� PðZ ¼ 0Þ
PðZ ¼ 1Þ

� �
� qY jZ¼0

a� PðZ ¼ 0Þ
PðZ ¼ 1Þ

� �
;

� qY jZ¼0

a� PðZ ¼ 1Þ
PðZ ¼ 0Þ

� �
¼ rY ða�Þ:

If for simplicity we assume that t
X jZ¼1
M ¼ t

Y jZ¼0
M , equating an X-score to a Y-

score would lead to X-scores defined on an expanded sample space. Note that in

this case, no explicit order between sX ða�Þ and sY ða�Þ can be established.

Similar comments apply for Table 3 (see, in particular, Figure 3b). Regarding

Table 4, it can be noted that if PðZ ¼ 1Þ ¼ PðZ ¼ 0Þ, the asymmetry observed

(i.e., shrunk or expanded sample spaces) disappears, but the severity of the iden-

tification problem still persists: An X-score is not uniquely transformed to a Y-score

(see Figure 3c). In other words, the results show that partial identification implies

lack of equitability for examinees with scores inside the identification region.

4.3. Empirical Illustration

To illustrate Theorems 4.1 and 4.2 and complement the comments given in the

previous sections, we use a data set appearing in Kolen and Brennan (2014). The
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data consist of two 36-item test forms for which 12 of the 36 items are common

between both test forms (Items 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, and 36).

Test Form X was administered to nP ¼ 1; 655 examinees, whereas Test Form

Y was administered to nQ ¼ 1; 638 examinees, so that, for this data

PðZ ¼ 1Þ ¼ nP
nPþnQ

¼ 1;655
1;655þ1638

¼ 0:503. Subsamples were used to illustrate

cases when the relative sizes of both groups differed.

We derived the identification regions for both FX and FY and for the associated

quantiles qX ðaÞ and qY ðaÞ. Figure 1 shows the identifiability bounds for different

values of the relative sizes and the corresponding target score distributions pro-

posed in the literature that are obtained under the traditional practice of identifying

using the ignorability condition for the case when o ¼ PðZ ¼ 1Þ. It can be seen

that the target score distributions computed as in Equation 2.5 are indeed a plausible

solution that lies between the identification bounds. Figure 1 also illustrates how the

degree of information associated with FX and FY due to the identification problem is

quantified by the width of the identification intervals, which corresponds to the

relative sizes of groups P and Q respectively. The degree of information on FX is

quantified by PðZ ¼ 0Þ, while for FY is quantified by PðZ ¼ 1Þ.
Figure 2 illustrates the fact that conditioning on A does not necessarily lead to

improve the identification intervals simultaneously for FX and FY (as it was

commented after Theorem 4.1).

The identifiability bounds for the quantile functions are shown in Figure 3.

This figure corroborates the findings related to the asymmetry of sample spaces

derived from Theorem 4.2. For instance, if we consider Figure 3a, we can con-

clude that transforming Y-scores to X-scores increases the lack of information

inherent to the Y-scale; if we do the converse transformation, the degree of

information inherent to the X-scale decreases (see Figure 3b). This result could

be considered as a criterion to choose which direction the equating transforma-

tion should be performed. Nevertheless, it also shows that the degree of infor-

mation cannot be increased arbitrarily because it depends on the relative sizes of

populations P andQ. Moreover, it is palatable that the lack of symmetry is due to

the fact that PðZ ¼ 0Þ 6¼ PðZ ¼ 1Þ. When both relative sizes are equal, symme-

try seems to be recovered (see Figure 3c), but the lack of information by design

persists: If a score on X is transformed to the Y scale using j, no unique

equivalent Y-score is obtained.

5. Improved Partial Identification Intervals

In this section, we show how the partial identification interval can be improved in

the sense that their widths decrease. This can be done by introducing alternative

assumptions. We motivate them in the context of a real data set example.
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5.1. Motivation

The Chilean Prueba de Selección Universitaria test (PSU, by their initials in

Spanish) is a university entrance test composed of four different sections: Language,

Mathematics, History, and Sciences (for details, see Horn et al., 2014). For the

Sciences section, there are three different test forms, each of them composed of 80

items and sharing 54 of the 80 items in common. More specifically, an examinee can

choose among a Sciences–Physics, Sciences–Biology, and Sciences–Chemistry test

form, where each form contains 26 subject-specific items and 18� 3 ¼ 54 common

items, 18 of each subject. A particular feature of the sciences test is that a unique

score on sciences should be reported, no matter what of the three forms was chosen

or, in other words, no matter to which of the group the examinee belongs to. Thus, to

report a score on sciences, a linking procedure under a NEAT design is needed.

For illustrative purposes, let us focus the attention on the following two

groups: Group P corresponds to the examinees who choose the Sciences–Chem-

istry form and GroupQ corresponds to the examinees who choose the Sciences–

Physics form. Following the notation of the main text, Form X corresponds to

Chemistry and Form Y to Physics. Table 5 shows the descriptive summaries of

the anchor scores. Both show that the distribution of anchor scores in groups P
andQ is similar. Furthermore, for Group P, the correlation between the X-scores

and the anchor scores is 0.9, whereas that for Group Q, the correlation between

the Y-scores and the anchor scores is 0.86.

5.2. Partial Identification of the Parameters of Interest

5.2.1. Modeling self-selection. The fact that each examinee can choose which

specific form to take raises a problem, namely, how to model a process of self-

selection in the personal choice of the test form. A plausible assumption to

represent a “rational choice” of a test form is to assume that those who choose

to take the form X do so because they believe they will score better more likely

than if they had chosen form Y and those who take the Form Y do so because they

believe they will score better more likely than if they had chosen Form X. This

type of strategy is indeed used in the context of the Sciences PSU test, as some

students are better trained in a subject than in other. As can be seen, these

assumptions are intended to formalize the idea that an examinee chooses one

form of testing or another because they want to maximize their score.

TABLE 5.

Anchor Scores for Different Quantiles of the Distributions in P and Q

Group Size qð0:25Þ qð0:5Þ qð0:75Þ Min. Max.

P 15.048 10 17 28 0 53

Q 13.771 11 18 30 0 53
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Given that the test forms include a set of common items, the assumption that

examinees choose form X aiming to score better more likely had they chosen

form Y can be represented probabilistically by at least the following three set of

conditions:

PðX > tjZ ¼ 1;A ¼ aÞ > PðY > tjZ ¼ 1;A ¼ aÞ; 8ðt; aÞ 2 W �A; ð5:1Þ

PðY > tjZ ¼ 0;A ¼ aÞ > PðX > tjZ ¼ 0;A ¼ aÞ; 8ðt; aÞ 2 W �A; ð5:2Þ

PðX > tjZ ¼ 1;A 2 A1Þ > PðY > tjZ ¼ 1;A 2 A1Þ; 8t 2 W; A1@A; ð5:3Þ

PðY > tjZ ¼ 0;A 2 A1Þ > PðX > tjZ ¼ 0;A 2 A1Þ; 8t 2 W; A1@A; ð5:4Þ

PðX > tjZ ¼ 1Þ > PðY > tjZ ¼ 1Þ; 8t 2 W; ð5:5Þ

PðY > tjZ ¼ 0Þ > PðX > tjZ ¼ 0Þ; 8t 2 W : ð5:6Þ

Conditions 5.1 and 5.2 depend on all the A-scores, whereas Equations 5.3

and 5.4 depend on some specific A-scores values, for instance, A1 ¼
fa 2 A : a � a1g. Here, we further assume that examinees who obtain an anchor

score a 2 A1 are supposed to maximize their specific scores by choosing either

Form X or Form Y. Consequently, for the remaining examinees obtaining an A-

score in Ac
1, the complement of the set A, no self-selection assumptions are

considered. Finally, conditions 5.5 and 5.6 do not depend on the anchor. It should

be noted that all these conditions, like the strong ignorability (Equation 4.1), are

not empirically testable because they all depend on unidentified parameters.

However, they all have an impact on the identification intervals in the sense that

the stronger are the conditions, the shorter are the identification intervals

obtained, which is in line with the so-called mean monotonicity assumptions

used in econometrics (see Manski, 2007).

5.2.2. Impact of the self-selection assumption on the identifiability of FX and FY.

The following theorem summarizes the impact of the self-selection assumptions

on the identifiability of FX and FY:

Theorem 5.1: In the NEAT design, under the assumptions 5.1 and 5.2, the

parameters of interest FX and FY are partially identified by the following inter-

vals: for all t 2 W
FX jZ¼1ðtÞPðZ ¼ 1Þ þ FY jZ¼0ðtÞPðZ ¼ 0Þ � FX ðtÞ � FX jZ¼1ðtÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ;

ð5:7Þ

FX jZ¼1ðtÞPðZ ¼ 1Þ þ FY jZ¼0ðtÞPðZ ¼ 0Þ � FY ðtÞ � FY jZ¼0ðtÞPðZ ¼ 0Þ þ PðZ ¼ 1Þ:
ð5:8Þ

Under assumptions 5.3 and 5.4, the parameters of interest FX and FY are

partially identified by the following intervals: for all t 2 W
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FX jZ¼1ðtÞPðZ ¼ 1Þ þ FY jZ¼0;A2A1
ðtÞPðZ ¼ 0;A 2 A1Þ

� FX ðtÞ � FX jZ¼1ðtÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ; ð5:9Þ

FX jZ¼1;A2A1
ðtÞPðZ ¼ 1;A 2 A1Þ þ FY jZ¼0ðtÞPðZ ¼ 0Þ

� FY ðtÞ � FY jZ¼0ðtÞPðZ ¼ 0Þ þ PðZ ¼ 1Þ: ð5:10Þ

Finally, under assumptions 5.5 and 5.6, the parameters of interest FX and FY

are partially identified by the intervals 5.7 and 5.8, respectively.

For a proof, see Supplemental Appendix C.

The upper bounds for the three sets of intervals are the same as the ones

derived in Theorem 4.1. Furthermore, intervals 5.7 and 5.8 have a common lower

bound despite that these identification intervals follow from two different

assumptions, namely, Equations 5.1 and 5.2, or 5.5 and 5.6. In order to see how

the identification intervals in Theorem 5.1 improve those in Theorem 4.1, Table 6

summarizes the corresponding width of the identification intervals. The identi-

fication interval (Equation 5.7) improves the interval (Equation 5.9), which in

turn improves the interval (Equation 4.5.i) because

PðY > t; Z ¼ 0Þ ¼ PðY > t; Z ¼ 0;A 2 A1Þ þ PðY > t; Z ¼ 0;A 2 Ac
1Þ

� PðY > t; Z ¼ 0;A 2 A1Þ þ PðZ ¼ 0;A 2 Ac
1Þ

� PðZ ¼ 0;A 2 A1Þ þ PðZ ¼ 0;A 2 Ac
1Þ

¼ PðZ ¼ 0Þ:

Similarly, the identification interval (Equation 5.8) improves the interval

(Equation 5.10), which in turn improves the interval (Equation 4.5.ii). Note

finally that the width of the intervals (Equations 5.7, 5.8, 5.9, and 5.10) depends

on t and, consequently, their width is not constant.

TABLE 6.

Widths of Identification Intervals

Identification Interval Width of the Interval

(4.5.i) PðZ ¼ 0Þ
(4.5.ii) PðZ ¼ 1Þ
(5.7) PðY > t; Z ¼ 0Þ
(5.8) PðX > t; Z ¼ 1Þ
(5.9) PðZ ¼ 0;A 2 Ac

1Þ þ PðY > t; Z ¼ 0;A 2 A1Þ
(5.10) PðZ ¼ 1;A 2 Ac

1Þ þ PðX > t; Z ¼ 1;A 2 A1Þ
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These results show that the stronger an assumption is, the smaller the inter-

vals, thus alleviating the severity of the identification problem; or, using Man-

ski’s (2007) jargon, this is an example of the Law of Decreasing Credibility:

“The credibility of inference decreases with the strength of the assumptions

maintained” (p. 1).

In the Supplementary Material, we briefly discuss the impact of the self-

selection assumptions on the partial identification of the quantiles of both FX

and FY.

5.2.3. Illustration. We come back to our motivating example to illustrate the

results presented in this section. The identification intervals for FX and FY are

shown graphically in Figure 4. The results when no particular assumptions are

made are shown in Figure 4a and are used here as a reference for comparison.

The improvement of the identification intervals is graphically illustrated in

Figure 4b, for A1 ¼ fa 2 A : a � 30g, and Figure 4c, when no conditioning

on A is made. It can be seen that compared to Figure 4a, both identification

intervals are narrower. The differences in the width of the intervals and the

dependency on t is also reflected in these figures. Note that the width of the

partial identification intervals decreases as the scores increases which seems to

be relevant in the context of a selection university process.

Summarizing, under assumptions (5.3) and (5.4), and (5.5) and (5.6), the

partial identification intervals of the parameters of interest are better than the

corresponding intervals derived in Sections 4.2.1 and 4.2.2. The example shows

that if self-selection assumptions are introduced, we learn something additional

from the evidence (examinees’ scores).

6. Discussion

The objective of statistical modeling is to specify the probability distribution

that generates the observables. This modeling process corresponds to a combi-

nation of evidence (the observables, the data) with the researcher’s ideas on the

explanation or formation of the phenomenon studied, which in turn are assump-

tions about unobserved quantities. “Knowledge is the set of conclusions that one

draws by combining evidence with assumptions about unobserved quantities”

(Manski, 2013, p. 2064). The content of this article is precisely in this line and

tries to make explicit the knowledge we obtain by combining the scores provided

by examinees under the NEAT design (the evidence provided by the phenom-

enon under analysis) with two type of assumptions used to tackle the identifica-

tion problem inherent to the NEAT design: strong ignorability (discussed in

Section 4.1) that leads to identify the score distributions and partial identifiability

(discussed in Sections 4.2.1 and 4.2.2), where no assumption regarding the

unobserved quantities is needed because the aim is to learn what the data alone

(i.e., without assumptions) can inform us.
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The modeling process consisted in specifying the statistical model (developed

in Section 3), that is, to specify (i) a set of probability distributions generating the

observations, (ii) making explicit their parameters, and (iii) pointing out the para-

meters of interest. Following Fisher (1922), the parameters of the sampling prob-

abilities are characteristics of the observations under study. However, the

researcher focuses the attention on additional characteristic of interest (represented

by parameters of interest), and thus, we want to know if such characteristics can be

expressed as functional of the sampling probabilities: When this is not possible, we

face an identification problem.
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FIGURE 4. Identifiability bounds for the score distributions of the Chilean Prueba de

Selección Universitaria Sciences test. (a) Under no assumptions. (b) Under a self-

selection process conditioning on A1 ¼ fa 2 A : a‡30g. (c) Under a self-selection

process without conditioning on A (for the lower bounds, the point and segmented curves

are superimposed in c).
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When conducting equating under the NEAT design, the parameters of interest

are FX and FY: Our modeling strategy allows us to make explicit their meaning as

well as their lack of identifiability. We suppose that the researcher knows that

those distributions are necessary to define the equating function (see Section 2.1),

and that it is possible to explicitly show why those parameters cannot be derived

from the statistical model, which is done through the decompositions (3.5) and

(3.7): The lack of identifiability of FX and FY is due to the lack of identifiability

of FX jZ¼0 and FY jZ¼1, which in turn follows from the lack of identifiability of

FX jA;Z¼0 and FY jA;Z¼1.

Decompositions (3.5) and (3.7) are a key step that surprisingly have not been

used in the equating literature, even though it has been recognized that the lack of

identifiability of FX jA;Z¼0 and FY jA;Z¼1 can be thought as a missing data problem

(see Holland et al., 2008; Sinharay & Holland, 2010). The missing data problem

and, in more general terms, the selection problem become palatable after using

the Law of Total Probability: It allows us to correctly relate FX and FY with the

identified conditional probability distributions. Consequences of this key step are

twofold: On the one hand, the notion of a target synthetic population is mean-

ingless; on the other hand, the target distributions are arbitrary and therefore

difficult to interpret with respect to the statistical model underlying the NEAT

design.

What is the knowledge we gain when we combine the evidence (examinees’

scores) with assumptions on the unobserved quantities? If we are ready to believe

the strong ignorability condition, then FX jA and FY jA become identified and,

in fact, are equal to FX jA;Z¼1 and FY jA;Z¼0. From these distributions, we obtain

FX and FY, and the equating function can be computed. Note that in this case,

PðZ ¼ 1Þ and PðZ ¼ 0Þ do not play any role.

If no assumption regarding the unobserved quantities is made, we have shown

the severity of the lack of identifiability of FX and FY. The partial identification

intervals show what we learn from the evidence in the absence of assumptions

regarding the unidentified parameters FX jZ¼0 and FY jZ¼1. In particular, PðZ ¼ 1Þ
and PðZ ¼ 0Þ quantify the lack of information by design that underlies FX and FY:

It involves a trade-off in the sense that the bigger PðZ ¼ 1Þ (respect., PðZ ¼ 0Þ)
is, the less we know about FY (respect., FX).

The lack of information on the unidentified parameters can somehow be

reduced by obtaining improved (shorter) identification intervals as those dis-

cussed in Section 5. The researcher’s assumptions reflect what they think about

the performance of the examinees taking the test forms. When these assumptions

are combined with the observations, it is possible to assess their impact in the

sense that it will become explicit to what extent the inference depends largely on

such assumptions and not just on the observations. A concrete example of this

modeling strategy is developed in Section 5.2.
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In this article, we have used the equipercentile equating transformation (see

Equation 2.1) that is more appealing for the FEE method (Angoff, 1984), also

called postratification (von Davier et al., 2004). Other equating transformations

based on IRT are also not exempted of the identifiability problem. For instance, in

OSE, different constraints must be imposed to solve the identifiability problem

(Sinharay & Holland, 2010; van der Linden & Barrett, 2016). Also, in local

equating (van der Linden, 2019), which is based on the assumption that X, Y, and

A all measure the same ability, y, the parameters of interest are the conditional

distributions FX jyðxÞ and FY jyðyÞ. These parameters are identified when the items

in the two forms and the anchor are jointly calibrated with appropriate identifica-

tion restriction under the same response model or when all parameters are linked

afterward through the anchor in the case of separate calibration of the two forms.

Scientific knowledge is obtained when evidence is combined with assump-

tions about unobserved quantities. Such assumptions become relevant when an

identification problem is present. A constructive modeling process like the one

developed in this article is relevant because it makes explicit to what extent

scientific knowledge is highly dependent on those assumptions. Psychometrics

needs to travel these avenues in order to be honest (Pielke, 2007):

Scientific honesty demands that the specification of a model be based on prior

knowledge of the phenomenon studied and possibly on criteria of simplicity, but

not on the desire for identifiability of characteristics that the researcher happens to

be interested in. (Koopmans & Reiersol, 1950, p. 169f)
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Supplementary Material

A A definition of random assignment in terms of bias

A way of conceiving the “realization of score data in test equating” is motivated by the assignment

of tests forms to “randomly selected” students. A clear example in test equating is the assignment

of test forms to randomly selected test takers under the equivalent groups design, a scheme that can

be associated with what is called a Randomized Controlled Trial. But, what is actually the meaning of

random selection/random assignment/random allocation, when terms such as “random” and “realization”

are mere denominations? In what follows we define “random assignment” in terms of “absence of bias”,

which in turn is formally described in terms of conditional probabilities.

Stephenson and Imrie (1998) point out that a randomized control trial (RCT) is the best way of mea-

suring the efficacy of intervention “because of its ability to minimise bias and avoid false conclusions.

Random assignment of individuals to different treatment groups is the best way of achieving a balance

between groups for the known and unknown factors that influence outcome” (p.611). Odgaard-Jensen et

al. (2011) are even more explicit in affirming that bias is reduced thanks to random assignment:

Randomised trials use the play of chance to assign participants to comparison groups. The unpre-

dictability of the process, if not subverted, should prevent systematic differences between comparison

1



groups (selection bias). Differences due to chance will still occur and these are minimised by ran-

domising a sufficiently large number of people.

Bhide, Shah, and Acharya (2018) contrasts a RCT with an observational study: the evidence based

on RCTs is the highest one because “evidence based on observational data is prone to bias”. Bias is

understood as “the systematic tendency of any factors associated with the design, conduct, analysis,

evaluation and interpretation of the results of a study to make the estimate of the effect of a treatment or

intervention deviate from its true value”. The presence of bias in an observational study is described in

the following terms: “If two or more groups are being compared in an observational study, there are often

systematic differences between the groups, so much so that the outcome of the groups may be different

because of these differences rather than actual exposure or intervention” (p.381). The way to overcome

this serious drawback is through a random assignment:

The only way to eliminate these differences is to allocate each individual to one or the other interven-

tion at random. Therefore, the probability of any individual receiving one intervention or the other is

decided solely by chance (p.381).

All these statements provide us with an intuition, but they fail to be formal in probabilistic terms because

random is not a probabilistic concept, just a designation, as we mentioned in Section 3.2. However, they

provide us with a term that can indeed be defined in probabilistic terms: bias. We propose a structural

definition of bias, that is, one that makes explicit the concept of bias and, therefore, is applicable to many

concrete situations.

This definition arise from the Law of Total Probability because it allows us to make explicit the coun-

terfactual aspect underlying bias selection. More specifically, letM be the sample space representing the

population of interest. Let V be a random variable defined on M representing the outcome of interest

(for instance, the consequence of a treatment), and C a random vector defined on M describing charac-

teristics of the statistical units. The target is to learn about P (V ≤ v | C) from P (V ≤ v | C,Z = 1),

2



where Z denotes the random assignment variable, namely

Z =

 1, if a statistical unit in M is selected;

0, if a statistical unit in M is not selected.

Since Z induces a partition on M , it is natural to decompose P (V ≤ v | C) through the Law of Total

Probability, namely

P (V ≤ v | C) = P (V ≤ v | C,Z = 1)P (Z = 1 | C) + P (V ≤ v | C,Z = 0)P (Z = 0 | C);

here P (V ≤ v | C,Z = 0) corresponds to the conditional probability of the outcome that the statistical

units would have experienced if they had been assigned to the treatment. Consequently, to learn about

P (V ≤ v | C), it is possible to ignore this last conditional probability only if

P (V ≤ v | C,Z = 1) = P (V ≤ v | C,Z = 0), (A.1)

or equivalently, if V ⊥⊥ Z | C, which means absence of bias.

Additionally, if the statistical units in Z−1{1} were chosen without taking into account their charac-

teristics captured by C, then

Z ⊥⊥ C. (A.2)

A RCT can thus accordingly be defined through the structural conditions (A.1) and (A.2). Furthermore,

bias should be defined as the logical negation of (A.1). Let us remark that we call these conditions

structural because we emphasize the “form” or “anatomy” of the concept, which need to be revealed for

specific problems. Moreover, up to the best of our knowledge, there not exist a formal proof deriving

conditions (A.1) and (A.2) from “random assignment mechanism”: if the proof existed, these conditions

would be a consequence; if not, they would be a formal definition.
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B Proof of the equivalence between (2.5) and (4.2)

If ω = P (Z = 1), then

FX(x) = FX|Z=1(x)P (Z = 1) + FX|Z=0(x)P (Z = 0)

= FX|Z=1(x)P (Z = 1) +
∑
a∈A

P (X ≤ x | A = a, Z = 0)P (A = a | Z = 0)P (Z = 0), namely (2.5)

= FX|Z=1(x)P (Z = 1) +
∑
a∈A

P (X ≤ x | A = a, Z = 1)P (A = a | Z = 0)P (Z = 0) by (4.1)

=
∑
a∈A

P (X ≤ x | Z = 1, A = a)P (A = a | Z = 1)P (Z = 1) +∑
a∈A

P (X ≤ x | Z = 1, A = a))P (A = a | Z = 0)P (Z = 0)

=
∑
a∈A

P (X ≤ x | Z = 1, A = a)P (A = a, Z = 1) +
∑
a∈A

P (X ≤ x | Z = 1, A = a)P (A = a, Z = 0)

=
∑
a∈A

P (X ≤ x | Z = 1, A = a)P (A = a),

which is precisely (4.2.i). Similar arguments can be used to obtain (4.2.ii).

C Proof of Theorem 5.1

Proof of (5.7): Using (5.2) to see that FY |A,Z=0 < FX|A,Z=0 ≤ 1, the result follows directly from

decomposition (3.5) after marginalizing with respect to A. The proof of (5.8) is obtained similarly using

(5.1) and (3.7).

Proof of (5.9): Note first that

(i) FX(t) = FX|A∈A1
(t)P (A ∈ A1) + FX|A∈Ac1(t)P (A ∈ A

c
1);

(ii) FY (t) = FY |A∈A1
(t)P (A ∈ A1) + FY |A∈Ac1(t)P (A ∈ A

c
1),

(C.1)
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where

(i) FX|A∈A1
(t) = FX|A∈A1,Z=1(t)P (Z = 1 | A ∈ A1) + FX|A∈A1,Z=0(t)P (Z = 0 | A ∈ A1);

(ii) FX|A∈Ac1(t) = FX|A∈Ac1,Z=1(t)P (Z = 1 | A ∈ Ac
1) + FX|A∈Ac1,Z=0(t)P (Z = 0 | A ∈ Ac

1);

(iii) FY |A∈A1
(t) = FY |A∈A1,Z=1(t)P (Z = 1 | A ∈ A1) + FY |A∈A1,Z=0(t)P (Z = 0 | A ∈ A1);

(iv) FY |A∈Ac1(t) = FY |A∈Ac1,Z=1(t)P (Z = 1 | A ∈ Ac
1) + FY |A∈Ac1,Z=0(t)P (Z = 0 | A ∈ Ac

1),

(C.2)

for all t ∈ W . In (C.2.i), FX|A∈A1,Z=0 is unidentified. Using (5.3), the corresponding lower bound of

FX|A∈A1
is given by

FX|Z=1,A∈A1
(t)P (Z = 1 | A ∈ A1) + FY |Z=0,A∈A1

(t)P (Z = 0 | A ∈ A1). (C.3)

Furthermore, FX|A∈A1,Z=0 ≤ 1 and, therefore, the corresponding upper bound of FX|A∈A1
is given by

FX|Z=1,A∈A1
(t)P (Z = 1 | A ∈ A1) + P (Z = 0 | A ∈ A1). (C.4)

Consider now (C.2.ii). Taking into account that no self-selection condition is assumed for those exami-

nees scoring a ∈ Ac
1, it follows that the lower bound of FX|A∈Ac1 is given by

FX|Z=1,A∈Ac1(t)P (Z = 1 | A ∈ Ac
1); (C.5)

and the corresponding upper bound by

FX|Z=1,A∈Ac1(t)P (Z = 1 | A ∈ Ac
1) + P (Z = 0 | A ∈ Ac

1). (C.6)

Combining (C.3) and (C.2.i), and (C.5) and (C.2.ii), the lower identification bound for FX in (C.1.) is

5



obtained as

FX(t) ≥
{
FX|Z=1,A∈A1

(t)P (Z = 1 | A ∈ A1) + FY |Z=0,A∈A1
(t)P (Z = 0 | A ∈ A1)

}
P (A ∈ A1) +

FX|Z=1,A∈Ac1(t)P (Z = 1 | A ∈ Ac
1)P (A ∈ Ac

1)

= P (X ≤ t, Z = 1, A ∈ A1) + P (Y ≤ t, Z = 0, A ∈ A1) + P (X ≤ t, Z = 1, A ∈ Ac
1)

= FX|Z=1(t)P (Z = 1) + FY |Z=0,A∈A1
(t)P (Z = 0, A ∈ A1).

Similarly, combining (C.4) and (C.2.i), and (C.6) and (C.2.ii), the upper bound for FX in (C.1.) is

obtained as

FX(t) ≤
{
FX|Z=1,A∈A1

(t)P (Z = 1 | A ∈ A1) + P (Z = 0 | A ∈ A1)
}
P (A ∈ A1) +{

FX|Z=1,A∈Ac1(t)P (Z = 1 | A ∈ Ac
1) + P (Z = 0 | A ∈ Ac

1)
}
P (A ∈ Ac

1)

= P (X ≤ t, Z = 1, A ∈ A1) + P (Z = 0, A ∈ A1) + P (X ≤ t, Z = 1, A ∈ Ac
1) +

P (Z = 0, A ∈ Ac
1)

= FX|Z=1(t)P (Z = 1) + P (Z = 0).

The partial identification intervals for FY are obtained using similar arguments.

�

6



D Partial identification of the quantiles for the self-selection case

Let us discuss the partial identification of the quantiles under assumptions (A.5) and (A.6). Let α ∈ [0, 1]

and define

uX(α)
.
= inf{t : FX|Z=1(t)P (Z = 1) + P (Z = 0) ≥ α};

uY (α)
.
= inf{t : FY |Z=0(t)P (Z = 0) + P (Z = 1) ≥ α};

v(α)
.
= inf{t : FX|Z=1(t)P (Z = 1) + FY |Z=0(t)P (Z = 0) ≥ α}.

Using arguments similar to those in Section 4.2.2, the following theorem follows:

Theorem D.1 In the NEAT design, under the assumptions(A.5) and (A.6), the quantiles of the partially

identified probability distributions FX and FY are partially identified by the following intervals:

(i) uX(α) ≤ qX(α) ≤ v(α);

(ii) uY (α) ≤ qY (α) ≤ v(α).
(D.7)

One of the conclusions of Theorem 4.2 was that the partial identified quantiles are not always informa-

tive. For instance, when P (Z = 1) < P (Z = 0), the upper bound sX(α) of qX(α) is equal to tX|Z=1
M

for all α > P (Z = 1); see Table 1; or when P (Z = 1) > P (Z = 0), the upper bound sY (α) of qY (α)

is equal to tY |Z=0
M for all α > P (Z = 0); see Table 2. Under the assumptions (A.5) and (A.6), this

situation is improved for the upper bound. As a matter of fact, the identification intervals (D.7.i) and

(D.7.ii) of qX(α) and qY (α), respectively, depend on the quantile v(α), which in turn corresponds to the

quantile of the distribution of getting an score equal to t either in form X or in form Y. This distribution

corresponds to a mixture. Following Bernard and Vanduffel (2015), it is possible to express the quantile

7



of the mixture in terms of F−1X|Z=1(α) and F−1Y |Z=0(α): let α ∈ [0, 1] and define δ∗ ∈ [0, 1] by

δ∗ = inf
{
δ ∈ (0, 1) : ∃ ε ∈ (0, 1) s.t. P (Z = 1) δ + P (Z = 0) ε = α, F−1X|Z=1(δ) ≥ F

−1
Y |Z=0(ε)

}
(D.8)

and ε∗ ∈ [0, 1] by

ε∗ =
α− P (Z = 1)δ∗

P (Z = 0)
. (D.9)

Then

v(α) = max
{
F−1X|Z=1(δ∗), F

−1
Y |Z=0(ε∗)

}
.

This equality shows that v(α) will be informative, as can be seen in Tables 1, 2 and 3.

Table 1: Lower and upper bounds for qX(α) and qY (α) when P (Z = 1) < P (Z = 0) under assumptions
(A.5) and (A.6); δ∗ and ε∗ are defined by (D.8) and (D.9), respectively

α uX (α) v(α) uY (α) v(α)

[ 0, P (Z = 1) ] t
X|Z=1
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

t
Y |Z=0
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

(P (Z = 1), P (Z = 0) ) t
X|Z=1
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

qY |Z=0

(
α−P (Z=1)
P (Z=0)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

[P (Z = 0), 1 ] qX|Z=1

(
α−P (Z=0)
P (Z=1)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

qY |Z=0

(
α−P (Z=1)
P (Z=0)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

Table 2: Lower and upper bounds for qX(α) and qY (α) when P (Z = 1) > P (Z = 0) under assumptions
(A.5) and (A.6); δ∗ and ε∗ are defined by (D.8) and (D.9), respectively

α uX (α) v(α) uY (α) v(α)

[ 0, P (Z = 0) ] t
X|Z=1
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

t
Y |Z=0
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

(P (Z = 0), P (Z = 1) ) qX|Z=1

(
α−P (Z=0)
P (Z=1)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

t
Y |Z=0
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

[P (Z = 1), 1 ] qX|Z=1

(
α−P (Z=0)
P (Z=1)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

qY |Z=0

(
α−P (Z=1)
P (Z=0)

)
max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}
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Table 3: Lower and upper bounds for qX(α) and qY (α) when P (Z = 1) = P (Z = 0) under assumptions
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t
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m max
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F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

t
Y |Z=0
m max

{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

[
1
2
, 1
]

qX|Z=1 (2α− 1) max
{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}

qY |Z=0 (2α− 1) max
{
F−1
X|Z=1

(δ∗), F
−1
Y |Z=0

(ε∗)
}
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