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Motivation

The analysis of the relationship between Test Scores and
Graded Point Average (GPA) provide an important source of
predictive validity evidence of a University Selection Test.
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Motivation

Figura: Real scenario

Warning!

The GPA is observed only in the selected group, whereas the scores of
the selection test are observed for the whole population of applicants.
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Motivation

Statistical procedures used for the evaluation of the predictive
validity:

Regression models 1 with truncated distributions (Nawata, 1994;
Heckman, 1976, 1979; Marchenko and Genton, 2012), and

Corrected Pearson correlation coefficient (Thorndike, 1949;
Pearson, 1903; Mendoza and Mumford, 1987; Lawley, 1943;
Guilliksen, 1950).

Assumption: a prior knowledge for the performance of the whole
population, which can be incompatible with the reality (Manski,
2003).

1It is formally known as Conditional Expectation of the outcome, Y , given the
test scores, X . The conditional expectation is denoted by E(Y |X )
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Motivation

Figura: Assumption for current solutions.
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Motivation

Figura: Some possible scenarios.
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Motivation

In the educational measurement literature, the predictive validity is typically
analyzed through the marginal effect, that is,

M.EX =
dE(Y |X )

dX
,

where, by the Law of Total Probability 2

E(Y |X ) = E(Y |X ,Z = 0)P(Z = 0|X ) + E(Y |X ,Z = 1)P(Z = 1|X ) . (1)

Warning!

As a consequence of the partial observability of the GPA, the conditional
expectation is not identified. Hence, the marginal effect is not identified
either.

2Z = 1 if the outcome is observed and Z = 0 otherwise.
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Motivation

Goal: To learn about the predictive validity of selection tests wit-
hout considering a prior structure for the performance of the whole
population.

Strategy: To make assumptions weaker than current solutions and
to find an Identification region of values for the marginal effects.
(Manski, 1993, 2005, 2007, 2013).
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Partial Identification solution

As it was mentioned before,

E(Y |X ) = E(Y |X ,Z = 0)P(Z = 0|X ) + E(Y |X ,Z = 1)P(Z = 1|X )

Then,

M.EX =
dE(Y |X ,Z = 0)

dX
P(Z = 0|X ) +

dE(Y |X ,Z = 1)

dX
P(Z = 1|X ) +

[E(Y |X ,Z = 1)− E(Y |X ,Z = 0)]
dP(Z = 1|X )

dX
(2)
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Partial Identification solution
Assumptions

If Y ∈ [y0, y1], then,

y0 ≤ E(Y |X ,Z = 0) ≤ y1

The marginal effect for the non-selected population exist3

D0x <
dE(Y |X ,Z = 0)

dX
≤ D1x

3if this population had been selected, the score of the selection test would have
predicted the outcome with an associated marginal effect
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By considering that the selection process is correct4, we can
assume that:

the marginal effect in the non-observed group is positive, i.e.,

0 <
dE(Y |X ,Z = 0)

dX

∣∣∣∣
X=x

.

The marginal effect in the non-observed group can not be higher
that the maximum observed marginal effect, i.e.,

dE(Y |X ,Z = 0)

dX

∣∣∣∣
X=x

≤ máx
x∈X

{
dE(Y |X ,Z = 1)

dX

∣∣∣∣
X=x

}

4The selection test is such that higher scores would translate to higher values of
the outcome
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Partial Identification solution
Identification Bonds for the Marginal Effect

Remember that

M.EX =
dE(Y |X ,Z = 0)

dX
P(Z = 0|X ) +

dE(Y |X ,Z = 1)

dX
P(Z = 1|X ) +

[E(Y |X ,Z = 1)− E(Y |X ,Z = 0)]
dP(Z = 1|X )

dX
(3)

Then, According to the ideas of Manski (1989)

M.EX=x ∈
(

dE(Y |X , Z = 1)

dX

∣∣∣∣
X=x

P(Z = 1|X = x) + [E(Y |X = x, Z = 1)− y0]
dP(Z = 1|X )

dX

∣∣∣∣
X=x

;

máx
x∈X

{
dE(Y |X , Z = 1)

dX

∣∣∣∣
X=x

}
P(Z = 0|X = x) + P(Z = 1|X = x)

dE(Y |X , Z = 1)

dX

∣∣∣∣
X=x

+ [E(Y |X = x, Z = 1)− y1]
dP(Z = 1|X )

dX

∣∣∣∣
X=x

]
(4)

(Manski, 1989).
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Application

Predictive validity of two mandatory University
Selection Tests in Chile, over the GPA of students in

the first year in a Chilean university

E(Y |X ,Z = 1) was estimated by an adaptive local linear
regression model using a symmetric Kernel.

P(Z = 1|X ) was estimated by using a Probit model.
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Application
Results
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Figura: Identification bounds for the Marginal Effect
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We have presented a method that allows to learn about the
predictive validity of selection tests through the marginal effect
under partial observability.

Our proposal has the advantage of not assuming any parametric
structure for the non-observed group, as we only use desired
properties of the selection tests.

Our proposal has the advantage of interpret the marginal effect
as a function of X and not as a number necessarily
Alarcón-Bustamante et al. (In press).

Extending the approach for the scenario where information of
more universities is available is a topic in progress.
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