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Abstract

This paper deals with the Intersection Property, or Basu’s First Theorem,
which is valid under a condition of no common information, also known as
measurable separability. After formalizing this notion, the paper reviews gen-
eral properties and give operational characterizations in two topical cases:
the finite one and the multivariate normal one. The paper concludes dis-
cussing the relevance of these characterizations for different fields as graphical
models, zero entries in contingency tables, causal analysis and estimability
in Markov processes.
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1 Introduction

Conditional independence is presently accepted as a fundamental con-
cept not only in the theory of statistical inference (see, e.g., Dawid, 1979a;
Florens et al., 1990; or Nogales et al., 2000), but also in statistical modelling,
particularly in structural modelling (see, e.g., Novick, 1979; Speed and Ki-
iveri, 1986; Lauritzen and Wermuth, 1989; Pearl, 1995; and Mouchart and
San Martin, 2003).

The use of graphical models to represent dependence relations among
random variables, and therefore to represent conditional independence, has
became very useful to model building since most dependencies and associa-
tions between variables can be visualized through graph representations. The
key idea behind these specification schemes is to utilize the correspondence
between separation in graphs and conditional independence in probability.
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A graphical representation is used to represent qualitative multivariate re-
lationships, specify and visualize multivariate statistical models, determine
statistical properties of multivariate models, and develop computationally
efficient algorithms for dealing with large multivariate models; for textbook
expositions, see Whitakker (1990), Cox and Wermuth (1996) and Lauritzen
(1998).

An aspect widely developed in the graphical literature consists in relat-
ing the properties of the conditional independence with algebraic structures
satisfied by graph relationships. Thus, an operational link is established
between conditional independence and graph representations in the sense
that conditions obtained after manipulations with graphs can be translated
in terms of conditional independence, and conversely; for details, see, e.g.,
Pearl (1988), Geiger et al. (1988), Studeny (1997) and Studeny and Bouck-
aert (1998).

This mutual fertilization works when universally valid properties of the
conditional independence are used; these ones can be found in, e.g., Mar-
tin et al. (1973), Dawid (1979a), Dohler (1980) and Mouchart and Rolin
(1984). Nevertheless, some specific problems in graphical models, or even
some substantive considerations in models building (for instance, structural
zeros in finite models), require to restrict the class of underlying probability
distributions in order to obtain the desirable graphical property. To be more
specific, and to introduce the problem analysed in this paper, consider the
following property, typically called Intersection Property:

(1) X1 J.LXQ | X3 and (11) X1 J_LX3 | X2 - (111) X1 J.L(XQ,Xg). (11)

where X1, X5 and X3 are random variables defined on a probability space
(Q,F,P) and - 1L | - denotes the conditional independence, i.e., X 1Y | Z
means that E[f(X) | Y,Z] = E[f(X) | Z] for all bounded Borel function
[, or, equivalently, E[f(X)g(Y) | Z] = E[f(X) | Z|E[g(Y) | Z] for all
bounded Borel functions f and g; for details and proofs, see Florens et al.
(1990, Chapter 2).

The Intersection Property is widely used in the graphical literature; see,
among others, Frydenberg (1990, condition CI5), Spohn (1980, Section 2;
1994, Definition 3), Pearl and Paz (1987, Section 4), Cox and Wermuth
(1993, Section 2), Geiger and Pearl (1993, Condition (7)), Kauermann (1996,
Section 2), Andersson et al. (1997, p. 87; 2001, p. 45), Koster (1996, Section
3; 1999, Section 3) and Studeny and Bouckaert (1998, p. 1438). It is, for
instance, used to establish the equivalence between pairwise, local and global
Markov properties for undirected graphs; for definitions and details, see Pearl
and Paz (1987) and Frydenberg (1990).
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Since Basu (1955, 1958), it is well known that the Intersection Prop-
erty (1.1) does not hold universally, but only under additional conditions —
essentially that there be no common information between X5 and X3. How-
ever, the implication is true under a stronger condition. Thus, for instance,
when 2 is a finite set, Spohn (1994, Theorem 4) requires that P be strictly
positive in the sense that P(A) = 0 only for A = (). When (X, X2, X3) is
normally distributed, Cox and Wermuth (1993) require that the covariance
matrix be positive definite. More generally, it is often required that P has a
positive joint probability density with respect to some product measure on
Q; see, e.g., Frydenberg (1990), Kauerman (1996), Anderson et al. (1997,
p. 87) and Lauritzen (1998, Proposition 3.1). Nevertheless, as Andersson
et al. (1997, Remark 3.3) pointed out, the strict positivity of the density of
P (w.r.t. some product measure on 2) is not a necessary condition under
which the Intersection Property (1.1) is valid; and Hill (1993) asserts that
“this positivity condition limits the possible applications. ... In particular,
the theorem cannot be applied to Bayesian networks with functional con-
straints (Lauritzen and Spiegelhalter, 1988) or to contingency tables with
structural zeros or to statistical mechanics systems with forbidden states
(Moussouris, 1974)” (p. 259).

Taking into account these considerations, the problem consists in looking
for conditions much weaker than the positivity of the density of P under
which the Intersection Property (1.1) is valid. This is precisely the content
of this paper. More specifically, in this paper we formalize the concept of
“no common information”, also known as “measurable separability”, so as
to provide a sufficient assumption to make the Intersection Property (1.1)
valid. Next we closely examine the condition of no common information and
provide equivalent characterizations in two particular cases, namely the cases
of discrete random vector and of normally distributed random vector. We
choose these two cases because they are the underlying structure of most of
the graphical representations of conditional independence; see, e.g., Spohn
(1994, pp. 174s) for the first case, and Cox and Wermuth (1993) for the
second case. In the finite case, we prove that the condition of no common
information between X5 and X3 is equivalent to a condition restricting, but
not excluding, the exact position of the null sets (or, sets of zero probability)
in the matrix which represents the joint distribution of (X3, X3). In the
normal case, we prove that the no common information corresponds to an
equality between the ranks of the covariance matrices of Xy and of (X3 | X3),
respectively.

The problem addressed in this paper, as well as its contribution, are
not only related to graphical models, but also to other fields such as Markov
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chains, causal inference and Basu’s First Theorem in a Bayesian set-up; these
connections are discussed in the last Section of this paper. Let us also men-
tion that Vantaggi (2001, 2002) establishes the Intersection Property under
alternative definitions of stochastic conditional independence motivated by
the de Finetti’s (1949, 1975) critique of Kolmogorov axioms. The results
obtained in this paper can, therefore, be considered as its counter-part in a,
purely Kolmogorovian set-up.

This paper is organized as follows. Section 2 introduces a formal def-
inition of the concept of no common information. Thereafter, operational
characterizations are discussed. This section ends with a review of results
relevant to the problem considered in the present paper. The main results
of this paper are contained in Sections 3 and 4. We complete the paper with
some concluding remarks. The proofs of the main results are gathered in
the Appendix.

2 A Formalization of the Concept of No Common Information

2.1. Definition. Let X; and X5 be two random variables defined
on a common probability space (2, F, P) taking values in the measurable
spaces (N1, N7) and (N2, N3), respectively. The information provided by
the random variables X; may be represented by the generated o-field X; =
X, Y(N;) = {X,; }(B) : B€N;} CF,often denoted as o(X;). As a matter
of fact, X; heuristically corresponds to the set of events that may be described
in terms of that random variable (Florens and Mouchart, 1982, p. 588). The
information thus defined does not depend on the coordinate system chosen
to represent the corresponding random variable because o(X;) = o[h(X;)]

for all bi-measurable and bijective function h.

As we do not want to distinguish two P-a.s. equal events, we rather
consider as the relevant information the completed o-fields X; = X; V Fo,
where Fy is the completed trivial o-field, namely Fo = {4 € F : P(A) €
{0,1}} (where A; V Ay is the smallest o-field containing A; U Az). We
use the measurable completion rather than the Lebesgue completion not
only to avoid loosing the countability generated character of completed o-
fields (this condition might be viewed as a “technicality”), but also to avoid
introducing events not generated by the random variables (this condition
is directly related with our concern, namely the information provided by a
random variable). Note that the completed trivial o-field F is the same for
equivalent probability measures (i.e. probability measures having the same
null sets as those of P).
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The common information provided by X; and X5 can be accordingly
described as X1 NAX,. Therefore, X1 and Xo don’t share common information
if and only if

¥n® =T, (2.1)

and we denote this property as X7 || Xo. When (2.1) holds, we also say
that Xy and Xy are measurably separated; see Florens et al. (1990, Section
5.2).

Let X3 be a random variable from (Q,F, P) to (N3, N3). The previous
concept can be extended to the case of no common information between X1
and X5 conditionally on X3, as follows:

VANV = X (2.2)

We denote this property as X1 || X2 | X35. When (2.2) holds, we also say that
X1 and X9 are measurably separated conditionally on X3. Clearly condition
(2.2) reduces to condition (2.1) when X3 = Fy. If we want to make explicit
the role of the probability P in this concept, we write Xy || X | X3; P.

2.2. Equivalent characterizations.

Heuristically, the concept of measurable separability, or no common in-
formation, means that the information common to X; and Xy is either trivial
(formulation (2.1)) or “already known” through X3 (formulation (2.2)). A
deeper understanding of the concept may be obtained by considering equiv-
alent conditions. This is the concern of next theorem:

THEOREM 2.1 Let X; (1 = 1,2,3) be random wvariables defined on a
fized probability space (2, F, P) and taking values in the measurable spaces
(N;, N;). The following conditions are equivalent:

(i) X1 and Xy are measurably separated conditionally on Xs.

(ii) If f(X1,X3) = g(X2,X3) a.s. for some f, bounded Borel function
defined on (N1 x N3, N1 ® N3), and some g, bounded Borel function
defined on (No X N3, No @ N3), then f(X1,X3) = h(X3) a.s. for some
h, bounded Borel function defined on (N3, N3).

(iii) If V[f(X1,X3) | X2, X3] =0 a.s. for some f, bounded Borel function
defined on (N1 X N3, N1 ®N3), then V[f(X1,X3) | X3] =0 a.s., where
V(- |-) is the conditional variance operator.
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The equivalence between statements (ii) and (iii) in Theorem 2.1 is
straightforward. The equivalence between statements (i) and (iii) follows
from the following relationship:

Ae (XIVX3)Q(X2 V Xg) — Ac (X1VX3) and E(HA | /Yg\/.)(g) =1, as.

For additional details, see Florens et al. (1990, Section 5.2). From condition
(2.2), it should be clear that the concept of measurable separability is sym-
metric between X; and X5. Thus, assertions (ii) and (iii) in Theorem 2.1
may also be symmetrized by permuting the indices 1 and 2.

The property of measurable separability is meant to exclude joint distri-
butions with a support such as the one depicted in Figures 1 and 2. Indeed,
in such cases X; and X, are not measurably separated because the event
{X1 € A1} is a.s. equal to the event {Xy € Bp}: these events represent a
non-trivial information common to X; and Xs.

A
X2

B

By

'l 'l 'l >
L L] L]

AL A2 X1

Figure 1: Counter-example to measurable separability

It should be clear from Theorem 2.1 and from these remarks that mea-
surable separability depends on the probability P through its null sets only.
Thus, if P and P" are equivalent probabilities, then X || X3 | X3; P <
X1 H X2 | X3; P,.

2.3. Measurable separability and conditional independence. Two rela-
tionships between measurable separability and conditional independence are
relevant for our discussion about the Intersection Property (1.1). The first
one tells us that measurable separability is a (much) weaker property than
conditional independence. More precisely,

PROPOSITION 2.1. If X7 1 Xy | X3, then X, || X5 | X3.
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Figure 2: Counter-example to measurable separability

For a proof, see Florens et al. (1990, Theorem 5.2.7). Thus, a sufficient,
but not necessary, condition for the measurable separability between X9 and
X3 is that their joint density be equivalent to a distribution making Xo and
X3 independent or that the support of the joint distribution be a rectangle.

A second relevant property is contained in the following proposition.

PROPOSITION 2.2. The following properties are equivalent:
(1) X1 J_LXQ | X3 and X1 J_LX3 | X2.

(ii) Xy AL(X2, X3) | M where M represents the information common to X
and X3, namely Ao N A3.

For a proof, see Dawid (1980, Theorem 7.1), Mouchart and Rolin (1984,
Corollary 3.6) or Florens et al. (1990, Corollary 2.2.13). This proposition
provides us with a condition under which the Intersection Property (1.1) is
true. As a matter of fact, if in Proposition 2.2, the information common
to X; and X, reduces to the completed trivial o-field Fy, then implication
(1.1) becomes true. This is the content of the following theorem:

THEOREM 2.2 Under the condition of no common information between
Xo and X3, namely Xo N X5 = Fy, the Intersection Property (1.1) is true.

As mentioned in the introduction, the literature of graphical models often
use a condition of strict positivity of the joint density of (X2, X3). This
condition assumes that the joint probability distribution is dominated by
the Lebesgue measure (on R?), implying that the interior of the support
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is not empty and excludes situations with mixed distributions composed
of a discrete component and a continuous one, as illustrated in Figure 2.
Under this restriction, the condition of positive density does indeed imply
measurable separability, but is actually much stronger and not necessary, as
will be shown in next section.

Theorem 2.2 can be extended to a conditional version. More precisely,

THEOREM 2.3 If X711 X | (X4,X3) and X1 Xy | (XQ,X?,), then
X1 W(Xa, X4) | X3 provided that Xo || X4 | Xs.

For a proof, see Florens et al. (1990, Theorem 5.2.10).

REMARK 1. As pointed out in the introductory section, Theorem 2.2 can
be translated into a Bayesian version of the Basu’s First Theorem as correctly
established in Basu (1958). As a matter of fact, if X is the information
and © is the parameter, Basu’s First Theorem says that a statistic T} =
t1(X) sampling independent of a sufficient statistics Th = t2(X) for © (i.e.
Ty 1Ty | ©and X 1O | Ty) is ancillary (i.e. T} 1L ©). Since the sufficiency
property implies that 77 1L © | T5, Theorem 2.2 tells us that this is true if
Ty and © are measurably separated. Moreover, T and T, are predictively
independent and this is an additional conclusion of this Bayesian version of
the First Basu’s Theorem.

REMARK 2. In asampling-theory framework, Koehn and Thomas (1975)
have proved Basu’s (1958) result under a condition of the non-existence
of a splitting set. More specifically, let {P? : @ € ©} be a family of
sampling distributions defined on a sample space (S,S). Then any statistics
Ty independent of a sufficient statistics T3 is ancillary if and only if T3 does
not contain a splitting set. The non-existence of a splitting set is a condition
established in a pure sampling set-up, whereas the measurable separability is
established in a pure Bayesian approach. Nevertheless, both conditions are
related: if the prior distribution p is such that the predictive distribution
dominates all the sampling probabilities {P? : @ € ©}, then measurable
separability implies the non-existence of splitting sets. If furthermore the
prior distribution y is such that PY(A) € {0,1} p-a.s. implies P?(A) € {0,1}
for all @ € ©, then measurable separability is equivalent to the non-existence
of splitting sets; for details, see Florens et al. (1990, Section 5.3.3).

The main conclusion of this section is that in order to establish the
Intersection Property (1.1) in particular cases, it is necessary to characterize
the condition X N X3 = Fy in more operational terms. This is precisely the
content of the next two sections.
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3 Measurable Separability in the Finite Case

3.1. Common information in the finite case: An example. Before char-
acterizing measurable separability in the finite case, let us introduce an ex-
ample which shows that such a condition is necessary to establish implication
(1.1). So, consider a finite distribution defined on {0,1} x {1,2,3} x {1,2,3}
with a support containing 8 points only, defined as follows.

X1 =0 X =0 X1 =0 X =0

X2 =1 aqi X2 =1 aq2 X2 =2 ﬂQ3 X2 =3 ﬂQ4
X3 =1 X3 =2 X3 =3 Xs=3

X = X =1 X = X =1

Xo=1 (I-a)gg Xo=1 (I-a)e Xo=2 (1-B)gz X2=3 (1-P)a
X3 X3 X3 =3 X3=3

where q1g2q3q40(1 — a)3(1 — B)( — B) >0 and g1 + g2 + g3 +qu = 1.

It is easily checked, by direct computations, that X; 1. Xy | X3 and, by
symmetry between X5 and X3, that X3 1L X3 | Xo. However, X; 1L (X9, X3)
is false (except in the excluded case ¢; = 1). Consequently, implication (1.1)
does not hold although the probability distribution of (X7, X9, X3) satisfies
conditions (i) and (ii) of the Intersection Property.

This example provides a key for an easy understanding of the concept
of measurable separability in the finite case. As a matter of fact, the joint
distribution of (X5, X3) is given by

Xz3=1 X3=2 X3=3

Xo=1 q1 q2 0 (3‘1)
X9=2 0 0 q3
Xy =3 0 0 qa

So, the support of (X5, X3) has 4 points which satisfy the following relation-
ship, as Figure 3 shows:

(Xo=1}={X3#3} as (3.2)

Condition (3.2) represents an information common to Xy and X3 (i.e., the
event {Xy = 1} is the same as the event {X3 # 3} for the joint probability
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distribution). Thus, “no common information” between X5 and X3 can
be expressed saying that if there exists two functions f and g such that
f(X1) = g(X3) a.s. for the joint probability, then there exists a constant ¢
such that f(X;) = ¢ a.s.; see Theorem 2.1, statement (ii). In other words,
“no common information” means that the only common information is the
trivial one, i.e., the class of measurable null sets.

[}
13
: | |
2 ¢
1 e

Figure 3: Support of (X2, X3)

3.2. Characterization of measurable separability in the finite case. To
characterize measurable separability in the finite case, let N, (with r =
2,3,4) be finite sets and X, : & — N, be random variables under the not
restrictive condition that P[X, =] > 0 for all 7 € N,. We define

NP = {ieNy : PIXy =i| X4 = k] > 0} fork € Ny,
N¥ = {jeNy: P[Xs =j| Xy =k >0} forke Ny
For k € Ny, define the |[N{¥| x |N{¥| matrix P®) by
pijie = PW); = P[Xo = i, X3 = j | X4 = K] for (i,5) € NJ” x N,
where |A| denotes the cardinal of set A. Finally, for k € Ny, let
NP = jeN® . PXy, =i, Xy = j| X, = k] > 0} forieNP.

The following theorem characterizes the measurable separability in the finite
case:



684  Ernesto San Martin, Michel Mouchart and Jean-Marie Rolin
THEOREM 3.1 The following statements are equivalent:
(i) Xo || X3 Xy;

(i) (Vk € Ny) (VI C NSy with I #0 and I # NP:

(U N§f>)m U 9| 2o

iEI Z’GNQ(IC)\I
(iii) (Vk € Ny) (VT ¢ NFY with T # 0 and T # NP [3(,4,5) € T x
(NQ(k) \I) x Nék)] such that
Pijlk - Pirjje > 0,
where A\ B denotes the difference between sets A and B.
For a proof, see Appendix A.

REMARK 3. Since the measurable separability condition Xo || X3 | X4
is symmetric in X9 and X3, one could formally add conditions to Theorem
3.1, which would be obtained by interchanging (I,i,2) with (J, 7, 3).

The next corollary makes explicit the particular case where X, is a con-
stant random variable (equivalently, Xy = Fy):

COROLLARY 3.1 The following statements are equivalent:
(i) Xz || X5;
(ii) (VI C N2) with I # 0 and I # Na, it follows that

<U N3i>ﬂ U Nsr ] # 6

iel i ENo\I

(i) (VI C Na) with I # 0 and I # Ny [3(i,4',5) € I x (N2 \ I) X N3] such
that
pij - pirj > 0.
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In Corollary 3.1, the sets No and N3 contain only points of positive
probability. As mentioned before, this is not a restrictive assumption since
if there exists iy € N such that P[Xy = ig] = 0, then P[Xs =iy, X3 =7] =0
for all j € N3. So, N3;, = () and, consequently, the corresponding column in
the joint probability distribution of (X2, X3) can be eliminated.

Considering condition (ii) of Corollary 3.1, it can be noticed that the mea-
surable separability between X9 and X3 not only depends on each marginal
distribution of X9 and X3 through the sets No and N3, but also on the joint
distribution of (X3, X3) through the sets Ns; for each i € Ny. Moreover,
N3; & N3 for some (possibly all) i € Na. Therefore, the case where there
exists (4,7) € Ny X N3 such that P[Xy = 4, X3 = j|] = 0 is not excluded.
In other words, condition (ii) of Corollary 3.1 tells us in what position must
be the non-zero (and so the zero) probabilities for the joint distribution of
(X2, X3): for each (i,i') € I x (Na \ I), there exists at least one column
J € N3 such that p;; - py; > 0, as illustrated in Figure 4.

j € N3

iel —ﬁ

€N e —

Figure 4: Condition (iii) of Corollary 3.1

EXAMPLE 1. Asan example, consider Xo € {1,...,5} and X3 € {1,...,4}
and the following joint probability distribution:

X3
1 2 3 4
I po 0 0 po
2 0 p3s ps O
25 0 0 p
4 0 pr 0 ps
5 p 0 ppo O
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where p; > 0 for all 4 = 1,...,10 and Z}gl p; = 1. Although the support
of this distribution has only 10 points (so, there are 10 points of zero prob-
ability), it is possible to verify condition (ii) or (iii) of Corollary 3.1, and
therefore X5 || Xj.

Condition (iii) in Corollary 3.1 shows that the condition p;; > 0 for all
(i,7) is sufficient but far from necessary for obtaining measurable separa-
bility between X5 and Xj3. The literature on graphical models repeatedly
mention the non-necessity of the strict positivity of all p;; (see the references
mentioned in Section 1): condition (iii) in Corollary 3.1 gives, for the finite
case, a necessary and sufficient condition.

REMARK 4. In the more general case, namely Xs || X3 | X4, with Xy
a non trivial random variable (i.e., Fo ¢ Xj), the measurable separability
between X5 and X3 conditionally on X4 should be verified for all k& € Ny.
More precisely, the condition (iii) of Theorem 3.1 should be verified for each
matrix P*)| with k € Ny.

3.8. Common information in the finite case: A general condition.

In which cases are X5 and X3 not measurably separated? Using the
equivalence between conditions (i) and (iii) of Corollary 3.1, it follows that
X, and X3 are not measurably separated if and only if (31 C Ny) with I # 0
and I # Ny [V (i,i',75) € I x (Na\ I) x N3] such that p;; - py; = 0, i.e.,
pij = 0, or py; = 0, or both. This condition is equivalent to the following:
the matrix P representing the joint probability distribution of (X9, X3) can,
after permuting (if necessary) rows and/or columns, be put in the form of a
block-diagonal matrix. This is a standard issue in the non-decomposability
of a finite Markov-chain in which case the probability matrix is square.

ExXAMPLE 2. Consider the case discussed in Section 3.1: the joint prob-
ability distribution of (X5, X3) is represented by the matrix (3.1). Such a
matrix is a block-diagonal one, so X9 Jf X3. This explains why X; is not
independent of (XQ,X?,), although X1 J_LXQ | X3 and X1 J_LX3 | X2.

ExaMPLE 3. Consider the counter-example provided by Hill (1993, p.
259); assume a trivariate discrete distribution such that P(X; = 0, X, =
0,X3 = 0) = P(X1 = I,XQ = 1,X3 = 1) = 0.5 and P(X1 = xl,Xg =
%2, X3 = x3) = 0 otherwise. As pointed out by Hill (1993), this distribution
satisfies conditions (i) and (ii) of the Intersection Property, but not the con-
clusion. This situation can be explained using the result established above:



IGNORABLE COMMON INFORMATION 687

it can indeed be verified that the matrix representing the joint distribution
of (X3, X3) can be presented in the form of a block-diagonal matrix.

REMARK 5. In the more general case, namely when X4 is a non trivial
random variable, Xo )| X3 | Xy if and only if there exists at least one
ko € Ny such that, after permuting (if necessary) rows and/or columns, the
conditional distribution P*0) of (X9, X3) given X4 = kg can be presented in
the form of a block-diagonal matrix.

3.4. Measurable separability and independence in the finite case. Let us
now re-examine Proposition 2.1 in the discrete case. By definition, X9 1l X3
if and only if V (i,5) € Na x N3

P[X; = i,X3 = j] = P[Xy = i]- P[X3 = j],

which is equivalent to r[P] = 1, where P represents the joint distribution of
(X2, X3) and r[P] stands for the rank of the matrix P. Consequently, there
are no non-null entries in the matrix P; so, condition (iii) of Corollary 3.1 is
trivially satisfied. This clearly shows that the condition of independence is
sufficient but far from necessary to obtain the measurable separability.

REMARK 6. Again, when X4 is a non trivial random variable, condition
X, 1L X3 | X4 is equivalent to (Vk € Ny) r[P*)] = 1, and implies condition
(iii) in Theorem 3.1.

4 Measure Separability in the Normal Case

The second case in which we want to analyse measurable separability,
or no common information, is the normal one. In such a case, the null
sets are well described through the null space of a p X ¢ matrix A, namely
Ker(A) = {z € R? : Az = 0}.

Let us consider a random vector X = (Xy', X3', X)) € RP2HP3+P4, Tt

Ker[V(Xy | X4)] = {a€RP2 :dXy = E(’X2| X4) as.}
Ker [C(Xg,XQ | X4)] = {Cl € RP2 C(Xg,a,ng | X4) =0 a.s.}
where V(- | -) and C(-,- | -) are the conditional variance and the conditional

covariance operators in the finite dimensional case, respectively; for details,
see, e.g., Drygas (1970) or Eaton (1989).

Suppose that (Xo', X3’ | X4")" ~ Npyips (1(X4),E(X4)), where X(Xy)
can be a positive or semi-positive definite symmetric matrix. The following
lemma establishes a simple result which provides an easy key to characterize
the measurable separability in the normal case; for a proof, see Appendix C.
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LEMMA 4.1. Suppose that (X', X3") are normally distributed condi-
tionally on Xy , i.e., (Xo', X3 | X4') ~ Npyips (1(X4), £(X4)), then

Ker [V(X2 | X4)] = Ker [V(XQ | X3,X4)] N Ker [C(Xg,XQ | X4)] a.s.
(4.1)
The following theorem (see Florens et al., 1993, Lemma 1.7) characterizes
the measurable separability in the normal case; for a proof, see Appendix C.

THEOREM 4.1 If (X!, X3' | X4') ~ Npyips (1(X4),E(X4)), then the
following statements are equivalent:

(i) X2 || X3 | Xy;

(ii) Ker[V (X2 | X4)] = Ker [V (X2 | X3,X4)] a.s.;

(iii) Ker [V (X2 | X3,X4)] C Ker[C(X3, X2 | X4)] a.s.;
)

rV(Xsa | X4)] = r[V(X2 | X3,X4)] a.s., where r(P) denotes the rank
of the matriz P.

(iv

Lemma 4.1 and Theorem 4.1 are valid whether the conditional covariance
matrix (X4) is singular or regular. The singular case is of particular interest
since our concern is to examine the role of the null sets for characterizing
measurable separability.

REMARK 7. Since the measurable separability condition Xo || X3 | X4
is symmetric in X9 and X3, one could formally add conditions to Theorem
4.1 by interchanging X5 and Xs.

If we consider the case Xy = c a.s. (¢ € Ny), then the following corollary
characterizes the measurable separability between X5 and X3 as follows:

COROLLARY 4.1 If (Xo', X3")" ~ Npyips (1, £), with ¥ is a positive or semi-
positive definite symmetric matriz, then the following propertiess are equiv-
alent:

(i) Xo || Xs;

(ii) Ker[V(X3)] = Ker [V (X3 | X3)];
(i) Ker [V (X3 | X3)] C Ker [C(X3, X3)];
)

(iv) r[V(X2)] = r[V(X2 | X3)].
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Clearly, when ¥ > 0, the density of (X5, X3) exists and is strictly posi-
tive, trivially ensuring the measurable separability between X3 and Xy; see
Cox and Wermuth (1993, p. 206). Corollary 4.1 gives a necessary and suffi-
cient condition of measurable separability far weaker than the existence of a
strictly positive density. Corollary 4.1 also provides operational conditions
to verify when Xy and X3 are not measurably separated.

The following lemma, is useful to illustrate Proposition 2.1 in the normal
case:

LEMMA 4.2. If (XQI,Xgl | X4I)I ~ Np2+p3(M(X4),E(X4)), with E(X4) a
positive or semi-positive definite symmetric matriz, then

X2J.LX3 | Xy — ’I"[C(X?,,XQ | X4)] =0 <= Ker [C(Xg,XQ | X4)] = RP2,

It follows from Lemmas 4.1 and 4.2 that
X2 J_LX3 | X4 =—> Ker [V(XQ | X4)] = Ker [V(Xg | X3,X4)].

By statement (ii) of Theorem 4.1, we again conclude that measurable sepa-
rability is much weaker than conditional independence.

ExXAMPLE 4. The following example illustrates very simply that the
a.s. positivity of the density (or, in the normal case, the regularity of the
covariance matrix) is not a necessary condition for measurable separability,
and that the singularity of the covariance matrix is not a sufficient condition
for non separability. Indeed, consider a trivariate normal distribution with
covariance matrix:

1 1 5
=11 15
b o5 1
It may be checked that V(Y3 | Y1,Y2) = .75 > 0. Thus, in view of Corollary
4.1, Y3 and (Y7,Y2) are measurably separated, whereas V(Y] | Y2,Y3) =0
and, therefore, Y7 and (Y2,Y3) are not measurably separated. It may be
noticed that, in this example, the singularity of the covariance matrix implies
that Y7 — Yy is a.s. a constant, there is accordingly common information
between Y; and Y3 and, therefore, between Y; and (Y3, Y3), whereas there is
no common information between Y3 and (Y7, Y2).
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5 Concluding remarks

The concept of “no common information”, also called “measurable sep-
arability” or absence of “splitting sets”, appears in different contexts in the
statistical literature. This paper has endeavoured to enhance the under-
standing of this concept by characterizing and illustrating what it is and
what it is not in two topical cases: the finite one and the multivariate nor-
mal one. An important issue was to analyse the role of the null sets. In
particular, in the finite case, the no common information was obtained even
if the corresponding contingency table has some zeros.

Another way of getting a deeper understanding is to examine the role of
that property in different contexts:

Basu’s First Theorem: The condition of measurable separability appears,
in the Introduction of this paper, as a supplementary condition for making
the implication embodied in the Intersection Property (1.1) valid. This con-
dition has been met in the First Basu’s Theorem; see Remark 1 and Basu and
Pereira (1983, Theorem 2). Interestingly enough, the first “proof” without
the supplementary condition in Basu (1955) was wrong because of mistreat-
ing null sets associated with conditional densities and the corrected proof,
Basu (1958) and Koehn and Thomas (1975), also shows that the supplemen-
tary condition aims at avoiding somewhat trivial pathologies, such as two
independent observations of the exact value of the parameter. Situations
formally similar to Basu’s first theorem are frequently met in the literature
on statistical inference; for examples, see Dawid (1979b). This condition is
also relevant in the literature on graphical models where that supplementary
condition is weaker than the too strong condition of a.s. positive density and
this weakening is recognized as providing a considerably more useful, and
operational, condition.

Causal Inference: The relevance of a suitable understanding of the con-
cept, and the role, of measurable separability is provided by an interesting
paper on “The assumptions on which causal inferences rest”, namely Stone
(1993). Thus, let us consider the following random variables: X for treat-
ment, Z for observed covariates, U for unobserved covariates and Y for
responses, under the assumption that U is comprehensive enough to make
the response determined by X, Z and U, namely Y = f(X, Z,U). The no-
causation hypothesis may be written as Y IL X | (Z,U), but is not directly
testable because U is not observed. A testable version could be Y 1L X | Z
and hopefully equivalent under a further assumption of covariate sufficiency,
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namely Y LU | (Z,X). The paper of Stone (1993) raises two interesting
issues. The first issue is regarding the role of measurable separability. As
mentioned in Remark 3, if X and U are measurably separated condition-
ally on Z (i.e., X | U | Z), then YU X | (Z,U) and Y ULU | (Z,X)
imply Y 1L (X,U) | Z and, therefore, Y 1L X | Z. In other words, the desired
no-causation hypothesis along with covariate sufficiency imply the testable
version of no-causation only under a hypothesis of measurable separability.
But, the equivalence asserted in Stone (1993) is misleading because Theo-
rem 2.2.10 in Florens et al. (1990) says that Y L X | Zand Y LU | Z, X is
actually equivalent to Y IL(X,U) | Z which implies Y IL X | Z, so that the
testable version of no-causation along with the covariate sufficiency imply
the desired no-causation without requiring a condition of measurable separa-
bility. The other issue is regarding the meaning of measurable separability
which is not the hypothesis that the support of the conditional distribution
of (X | Z,U) does not depend on U, as asserted in Stone (1993): this is made
clear in Example 4 after reminding that (using the notation of the example)
always P[(Y1,Y2,Y3) € Im (3) + ] = 1, i.e., supp[(Y1, Y2, ¥3)'] C Im () + i
with probability 1. Interestingly enough, Stone (1993) correctly noticed that
the measurable separability is actually part of the definition of unobserved
covariates. Indeed, U may be defined by the properties Y = f(X, Z,U) and
X || U | Z: if there were common information between X and U condition-
ally on Z, it would be difficult to interpret U as being both unobserved and
comprehensive; for more details, see Mouchart (2004).

Estimability in Markov Processes: Somewhat different is the role of mea-
surable separability in problems of exact estimability. Thus Florens et al.
(1990, Proposition 9.3.24) shows that the sampling measurable separability
of the first two observations in a stationary Markovian process is sufficient to
ensure the exact estimability of the minimal sufficient parameter: these au-
thors also mention that the condition of measurable separability is slightly
too strong but easier to handle than Doeblin’s condition; see, e.g., Stout
(1974, Section 3.6) or Breiman (1968, Section 7.3).

Identification of ATE: In recent unpublished works, for the analysis of
identification of the Average Treatment Effect (ATE) in non parametric
models, Florens et al. (2003) have repeatedly used the condition of measur-
able separability (see, e.g., their Theorem 3.5 for the equivalence between an
exclusion condition and a Local Instrumental Variable condition, or Theorem
3.6 for the identification of the ATE).
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Appendix
A Proof of Theorem 3.1

The equivalence between statements (ii) and (iii) follows from the def-

inition of the sets Néf) and Néf,). Before proving that statement (i) im-
plies statement (ii), note that by Theorem 2.1, Xy || X3 | X4 is equiv-
alent to the assertion that if there exist two functions f and g such that
f(i,k) = g(j,k) V(i,7,k) such that p;;;, > 0, then there exists a function h
such that f(i,k) = h(k) V (i,k) such that p;;, > 0. By the definition of the

sets NQ(k), Nék) and Néf), this last implication is equivalent to the following:

— f(i,k) =h(k) YkeN, Vie N,
(A.1)

PROOF OF (i) = (ii). Indeed, if the condition (ii) is not satisfied, it
follows that (3% € Ny) (37 € NS¥) with T # 0 and T # N such that

k k
(U N?Ei)) Nl U w2 =0
Denoting |J N?Ef) as J(I), it follows that

el

moamc| U M = N (MOANP),
ieNSINT ieNSINT
(A.2)

G Je = (M NP).

el

(A2i) = VjeJ()] (Vie NN\I)  pyp =0
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Consequently, P[X, € NS\ I,X; € J(I) | X4 = k] = 0 and P[X, €
I, X3 e€ J(I)°| X4 =k] = 0. Therefore

{XQ € I} N {X4 = k} = {X3 € J([)} N {X4 = k} a.s. (A3)

Moreover,
O0<PXoel,Xy =k <1 (A.4)

since P[Xy € I| X4 = k] < 1. If not, i.e., if P[Xy € I | X4 = k] = 1, then:

S PIXy=i|Xy =k =1 and 1GNP
el

Hence, (3ip € NS\ I) P[Xy = o | X4 = k] = 0. This is a contradiction
with the definition of the set NQ(k). Therefore, (A.3) and (A.4) jointly imply
that Xo || X3 | X4 is violated (see (A.1)).

PROOF OF (iii) = (i). Assume that there exist two functions f and g
such that

k) = g(i.k) VkeEN V(i) e NP x NP, (A.5)

Condition (iii) implies that (V& € Ny) (VI C N3¥) with I # 0 and T # N
(3 (") € I x N\ T) such that

N > NP A NE 2.

Let jo € N\ n N{¥). By (A.5) it follows that f(i, k) = f(i', k). Therefore,
we have that (Vk € Ny) (VI C N3¥) with T # 0 and T # N$F) (3(,i") € I x
NZ(k) \I) such that f(i,k) = f(¢, k). Applying inductively this condition we
obtain that V4,4 € N\¥'  f(i,k) = f(i', k). Consequently, taking iy € Ni"
fixed, this last equality is equivalent to f(i,k) = f(ig,k) = h(k) Vi€
NP 0

B Proof of Lemma 4.1

In general, V(a'Xs | X4) = E[V(d'Xs | X3,X4) | X4] + V[E(d' X2 |
X3, X4) | X4]. Under normality, V[E(a'Xy | X3,X4) | X4] = 0 as. is
equivalent to C'(X3,a'Xs | X4) = 0 a.s. Therefore, the nullity of each
member of the equality corresponds to a pertaining to the respective null
spaces of (4.1). O



694  Ernesto San Martin, Michel Mouchart and Jean-Marie Rolin

C Proof of Theorem 4.1

The equivalence between (ii) and (iii) is an immediate consequence of
Lemma 4.1, whereas the equivalence between (ii) and (iv) is a consequence
of the rank theorem in linear algebra (see, e.g., Halmos, 1974, Theorem 1,
Section 50). The proof of the equivalence between (i) and (iii) is based on
the following lemma.

LEMMA C.1 Let (Z\',Z)') € RPr*P2 be a random wvector such that
rV(Zy | Z3)] = 1 < p1. Then there exists a q1 X p1 matriz T with
r(T) = q such that

(i) r[V(TZ1 | Z2)] = q1;

(11) U(TZl,ZQ) == U(ZI,ZQ).

Proor or LEmMA C.1. If ¢ = p;, take T = I, . Assume therefore
that ¢; < p1. Then there exists an orthogonal matrix (g) with T" a q1 X p1
matrix and @ a (p; — ¢1) X p; matrix, such that V(Z; | Z3) = T'AT,
where A is the diagonal matrix with the positive eigenvalues of V(Z; | Z5).
Therefore V(T'Z, | Z3) = A; this proves (i). Moreover, V(QZ; | Z2) = 0,
C(TZ\,QZ | Z3) =0, TT' = I, and T'T + Q'Q = I,,. Tt follows that

QZl = E(QZl | ZQ) ZQ—a.s.

and consequently 7y = T'TZ, + Q'Q7Zy = T'TZ, + Q' E(QZy | Z2) Zs-
a.s. Therefore 0(Z,,Zs) C 0(TZ1,Z>). The inverse inclusion o(T'Z;, Z2) C
o(Zy1,Z3) being trivial, we obtain (ii). O

PROOF OF (i) <= (iii). To verify this equivalence, Lemma C.1 is used,
on the one hand, to characterize the o-fields o(X5, X3) and o(X4, X3), and,
on the other hand, to find a non-degenerate normal distribution (Y, Y3 | X4),
where Y5 and Y3 are suitable transformations of Xo and X3, respectively.

As a matter of fact, assume that r[V (X3 | X4)] = g3 < p3. By Lemma
C.1, there exists a full rank g3 x ps matrix T3 such that Y3 = T5 X3, r[V (Y3 |
X4)] = ¢q3 and

U(Xg,X4) :U(Y3,X4). (Cl)

It follows that

(X2 | Y3, X4) ~ Ny, (9(Xs) + B3(X4)Y3, V(X2 | V3, X4)), (C.2)
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where r[V (X3 | Y3, X4)] = g2 < p2. By Lemma C.1, there exists a full rank
q2 X p2 matrix T such that Yo = T» Xy and
(Yo | Y3, Xy) ~ Ny (Tog(X4) + ToB3(X4)Ys, V(Yz | Y3, Xy)),
rV (Y | Y3, X3)] = o (©3)

Moreover, using arguments similar to that used in the proof of Lemma C.1,
it follows that

Xo =ToYo + Q5Q2 E(Xo | Y3, X4) (Y3, X4)-a.s.

where @2 is a full rank (p2 — g2) X p2 matrix such that Q2Q% = I, 4, and
Q2T2, = TQQIZ = 0. Therefore, QQXQ = Q2 E(X2 | Y3,X4) (Y3,X4)—a.s. and,
consequently,

0(X2,X4) = 0(Ta X2, Q2X2,Xy) C (Y, Q2 E(X2 | Y3,X4), X4).

Since the other inclusion is trivial, it follows that

O'(XQ,X4) = O'(YQ,QQ E(X2 | Y3,X4),X4). (04)

Thus, from (C.2) and (C.3) it follows that (Y5,Y3 | X4) has a non-degenerate
probability distribution. Therefore, there exists a probability distribution
P’ ~ P such that

a(Y2) LLo(Y3) | o(Xy); P, (C.5)

where P corresponds to the probability distribution of (Y3,Y3, X}). Since
U(Q2 E(XQ | Y3,X4)) C U(Yg,X4), condition (C5) implies that

o(Y2) Lo (V3) | 0(Q2 E(Xa | Y3, X4), X4); P'.
Since P’ ~ P, Proposition 2.1 implies that
a(Ya) || o(V3) | o(Q2 E(X2 | Y3, X4), X4); P.

Thus, using conditions (C.1) and (C.4), it follows that

o(Xo, X4)No(X3,Xy) = o(Ye,Q2E(Xy | Y3, Xy), Xy4)No(Y3, Xy)

= O'(Q2 E(X2 |Y37X4)7X4)'

Therefore, o(X3) || o(X3) | 0(Xy) if and only if o(Q2 E(X3 | Y3, Xy)) C
0(Xy4) or, equivalently, V[Q2 E(X2 | Y3, X4)] =0 a.s., i.e.,

Q5Q2C(X2,Y3 | X4) =0 as. (C.6)
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Since Q5Q2 is an orthonormal projection on Ker [V (X5 | Y3, X4)], condi-
tion (C.6) is equivalent to Im [C(X>,Y3 | X4)] C {Ker[V(X;y | Y3, X4} .
This last relation can equivalently be rewritten as Ker [V (X2 | Y3, X4] C
Ker [C(Y3, X2 | X4)], which is equivalent to condition (iii) of Theorem 4.1
because of condition (C.1) and C(X3, Xo | X4) = T5 C(Y3, Xo | Xy). O

Acknowledgments. This research is financially supported by different
grants: the FONDECYT Project No. 1030801 from the Chilean Govern-
mennt; a grant to the first author from the COIMBRA Group for visiting
the Department of Psychology, K. U. Leuven, Belgium; the “Projet d’Actions
de Recherche Concertées” No. 98/03-217; and the “Interuniversitary Attrac-
tion Pole”, Phase V (No. P5/24) from the Belgian Government.

References

ANDERSSON, S.A., MADIGAN, D. and PERLMAN, M. (1997). On the Markov equivalence
of chain graphs, undirected graphs, and acyclic digraphs. Scand. J. Statist., 24,
81-102.

ANDERSSON, S.A., MADIGAN, D. and PErRLMAN, M.D. (2001). Alternative Markov
properties for chain graphs. Scand. J. Statist., 28, 33-85.

Basu, D. (1955). On statistics independent of a complete sufficient statistics. Sankhya,
15, 377-380.

Basu, D. (1958). On statistics independent of sufficient statistics. Sankhya, 20, 223-226.

Basu, D. and PErEIrRA, C.B. (1983). Conditional independence in statistics. Sankhya
Ser. A, 45, 324-337.

BREIMAN, L. (1968). Probability. Addison Wesley, Reading, Massachusetts.

Cox, D.R. and WERMUTH, N. (1993). Linear dependencies represented by chain graphs
(with Discussion). Statist. Sc., 8, 204-283.

Cox, D.R. and WERMUTH, N. (1996). Multivariate Dependencies: Models, Analysis and
Interpretation. Chapman and Hall, London.

Dawip, A.P. (1979a). Conditional independence in statistical theory (with Discussion).
J. Roy. Statist. Soc. Ser. B, 41, 1-31.

Dawip, A.P. (1979b). Some misleading arguments involving conditional independence.
J. Roy. Statist. Soc. Ser. B, 41, 249-252.

Dawip, A.P. (1980). Conditional independence for statistical operations. Ann. Statist.,
8, 598-617.

DE FINETTI, B. (1949). Sull’impostazione assiomatica del calcolo delle probabilit. Annali
Univ. Trieste, 19, 3-55.

DE FINETTI, B. (1975). Theory of Probability, Vols. 1 and 2. Wiley, London.

DOHLER, R. (1980). On the conditional independence of random events. Theory Probab.
Appl., 25, 628-634.

DryGas, H. (1970). The Coordinate-Free Approach to Gauss-Markov Estimation. Lec-
ture Notes in Operation Research and Mathematical Systems 40. Springer, Berlin.



IGNORABLE COMMON INFORMATION 697

EaToN, M.L. (1989). Multivariate Statistics. A Vector Space Approach. Wiley, New
York.

FLORENS, J.P. and MouCHART, M. (1982). A note on noncausality. Econometrica, 50,
583-591.

FLORENS, J.P., MoUCHART, M. and RoLIN, J.M. (1990). Elements of Bayesian Statis-
tics. Marcel Dekker, New York.

FLORENS, J.P., MOUCHART, M. and RoLIN, J.M. (1993). Noncausality and marginal-
ization of Markov processes. Econometric Theory, 9, 241-262.

FLORENS, J.P., HECKMAN, J.J., MEGHIR, C. and VYTLACIL, E. (2003). Instrumental
variables, local instrumental variables and control functions. Unpublished discus-
sion paper. Available at http://idei.fr/doc/by/florens/nonpar_iv_aprill.pdf.

FRYDENBERG, M. (1990). The chain graph Markov property. Scand. J. Statist., 17,
333-353.

GEIGER, P., PAz, A. and PEARL, J. (1988). Axioms and algorithms for inferences
involving probabilistic independence. Inform. and Comput., 91, 128-141.

GEIGER, D. and PEARL, J. (1993). Logical and algorithmic properties of conditional
independence and graphical models. Ann. Statist., 21, 2001-2021.

HaLMos, P. (1974). Finite-Dimensional Vector Space. Springer, New York.

Hitn, J.R. (1993). Comments on linear dependencies represented by chain graphs.
Statist. Sci., 8, 258-261.

KAUERMANN, G. (1996). On a dualization of graphical Gaussian models. Scand. J.
Statist., 23, 105-116.

KoEHN, U. and THOMAS, D.L. (1975). On statistics independent of a sufficient statistic:
Basu’s lemma. Amer. Statist., 29, 40-42.

KOSTER, J.A.T. (1996). Markov properties of nonrecursive causal models. Ann. Statist.,
24, 2148-2177.

KOSTER, J.A.T. (1999). On the validity of the Markov interpretation of path diagrams
of Gaussian structural equation systems with correlated errors. Scand. J. Statist.,
26, 413-431.

LAURITZEN, S. (1998). Graphical Models. Clarendon Press, Oxford.

LAURITZEN, S. and SPIEGELHALTER, D.J. (1988). Local computations with probabilities
on graphical structures and their application to expert system (with discussion). J.
Roy. Statist. Soc. Ser. B, 50, 157-224.

LAURITZEN, S. and WERMUTH, N. (1989). Graphical models for associations between
variables, some of which are qualitative and some quantitative. Ann. Statist., 17,
31-57.

MARTIN, F., PETIT, J.L. and LITTAYE, M. (1973). Indépendance conditionnelle dans le
modéle statistique bayésien. Ann. Inst. Henri Poincaré, 9, 19-40.

MoucHART, M. (2004). Ignorable Missingness, Discussion Paper. Available at
http://www.stat.ucl.ac.be/ISpersonnel/mouchart/pub.html.

MoUCHART, M. and RoLIN, J.M. (1984). A note on conditional independence with
statistical applications. Statistica, 44, 557-584.

MoUcHART, M. and SAN MARTIN, E. (2003). Specification and identification issues

in models involving a latent hierarchical structure. J. Statist. Plann. Inf., 111,
143-163.



698  Ernesto San Martin, Michel Mouchart and Jean-Marie Rolin

MouUssoURIs, J. (1974). Gibbs and Markov random systems with constraints. J. Statist.
Phys., 10, 11-33.

NoGALEs, A.G., Ovora, J.A. and PEREz, P. (2000). On conditional independence
and the relationship between sufficiency and invariance under the Bayesian point
of view. Statist. Prob. Lett., 46, 75-84.

Novick, M.R. (1979). Comments on conditional independence in statistical theory. J.
Roy. Statist. Soc. Ser. B, 41, 27.

PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, San Mateo, Ca.

PEARL, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika,
82, 669-710.

PEARL, J. and PAz, A. (1987). Graphoids: graph-based logic for reasoning about rele-
vance relations. In Advance in Artificial Inteligence-II, B. Du Boulay, D. Hogg and
L. Steels, eds., Elsevier, Amsterdam, 357-363.

SpEED, T.P. and Knveri, H.T. (1986). Gaussian Markov distributions over finite
graphs. Ann. Statist., 14, 138-150.

SpoHN, W. (1980). Stochastic independence, causal independence, and shieldability. J.
Phil. Logic, 9, 73-99.

SpoHN, W. (1994). On the properties of conditional independence. In Patrick Sup-
pes: Scientific Philosopher, Volumen 1: Probability and Probabilistic Causality, P.
Humphreys, ed., Kluwer, Dordrecht, 173-196.

STONE, R. (1993). The assumptions on which causal inference rest. J. Roy. Statist. Soc.
Ser. B, 55, 455-466.

Stout, W.F. (1974). Almost Sure Convergence, Academic Press, New York.

STUDENY, M. (1997). Semigraiphoids and structures of probabilistic conditional inde-
pendence. Ann. Math. Art. Intell., 21, 71-98.

STUDENY, M. and BOUCKAERT, R.R. (1998). On chain graph models for description of
conditional independence structures. Ann. Statist., 26, 1434-1495.

VANTAGGI, B. (2001). Conditional independence in a coherent setting. Ann. Math.
Artif. Intell., 32, 287-313.

VANTAGGI, B. (2002). The L-separation criterion for description of cs-independence
models. International J. Approrimate Reasoning, 29, 291-316.

WHITAKKER, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley,

Chichester.
ERNESTO SAN MARTIN MICHEL MOUCHART AND
DEPARTMENT OF STATISTICS JEAN-MARIE ROLIN
PoNTIFICIA UNIVERSIDAD INSTITUT DE STATISTIQUE
CATOLICA DE CHILE UNIVERSITE CATHOLIQUE DE LOUVAIN
CASILLA 306, SANTIAGO 22, CHILE 20 VoIiE DU ROMAN PAys
E-mail: esanmart@mat.puc.cl B-1348 LOUVAIN-LA-NEUVE, BELGIUM

E-mail: mouchart@stat.ucl.ac.be
rolin@stat.ucl.ac.be

Paper received: April 2005; revised October 2005.



