
PSYCHOMETRIKA—VOL. 78, NO. 2, 341–379
APRIL 2013
DOI: 10.1007/S11336-013-9322-8

IDENTIFICATION OF THE 1PL MODEL WITH GUESSING PARAMETER: PARAMETRIC
AND SEMI-PARAMETRIC RESULTS

ERNESTO SAN MARTÍN

FACULTY OF MATHEMATICS, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTY OF EDUCATION, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

MEASUREMENT CENTER MIDE UC

CEPPE

JEAN-MARIE ROLIN

INSTITUT DE STATISTIQUE, BIOSTATISTIQUE ET SCIENCES ACTUARIELLES, UNIVERSITÉ
CATHOLIQUE DE LOUVAIN

LUIS M. CASTRO

DEPARTMENT OF STATISTICS, UNIVERSIDAD DE CONCEPCIÓN

In this paper, we study the identification of a particular case of the 3PL model, namely when the
discrimination parameters are all constant and equal to 1. We term this model, 1PL-G model. The iden-
tification analysis is performed under three different specifications. The first specification considers the
abilities as unknown parameters. It is proved that the item parameters and the abilities are identified if a
difficulty parameter and a guessing parameter are fixed at zero. The second specification assumes that the
abilities are mutually independent and identically distributed according to a distribution known up to the
scale parameter. It is shown that the item parameters and the scale parameter are identified if a guessing
parameter is fixed at zero. The third specification corresponds to a semi-parametric 1PL-G model, where
the distribution G generating the abilities is a parameter of interest. It is not only shown that, after fixing
a difficulty parameter and a guessing parameter at zero, the item parameters are identified, but also that
under those restrictions the distribution G is not identified. It is finally shown that, after introducing two
identification restrictions, either on the distribution G or on the item parameters, the distribution G and
the item parameters are identified provided an infinite quantity of items is available.

Key words: 2PL model, 3PL model, location-scale distributions, fixed effects, random effects, identified
parameter, parameters of interest, Hilbert space, Gibbs sampler, measurable separability.

1. Introduction

For multiple-choice tests, it is reasonable to assume that the respondents guess when they
believe that they do not know the correct response. This type of behavior seems to be prevalent
in a low-stakes test, where students are asked to take a test for which they receive neither grades
nor academic credit, and thus may be unmotivated to do well. A solution for this problem is
to combine the 1PL or 2PL model with a so-called guessing parameter. Three possibilities are
found in the literature (Hutschinson, 1991): (1) a fixed value L−1, with L being the number of
response categories; (2) an overall guessing parameter to be estimated from the data, with the
same value for all items; (3) an item-specific guessing parameter. The second possibility can be
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viewed as a restricted 3PL in the sense that the guessing parameters are all equal to a single
unknown value. The third possibility is the one used in the 3PL, the extension of the 2PL with
an item-specific guessing parameter; this parameter reflects the probability of a correct guess.
When the discrimination parameters are assumed to be 1, another restricted 3PL is obtained, the
so-called 1PL-G model according to San Martín, Del Pino, and De Boeck’s (2006) terminology.

The 3PL, and its restricted versions, are popular models. It is not only discussed in most
handbooks of IRT (Hambleton, Swaminathan, & Rogers, 1991; van der Linden & Hamble-
ton, 1997; McDonald, 1999; Embretson & Reise, 2000; Thissen & Wainer, 2001; Millsap &
Maydeu-Olivares, 2009), but the option is available in various specialized computer programs
(e.g., BILOG, LOGIST, MIRTE, MULILOG, PARSCALE, RASCAL, ltm). In spite of being
widely used, there are still basic questions to be investigated regarding the 3PL model, and these
questions are likely to have an impact on both theory and practice. Parameter identification is
one of those basic questions. Identifiability is relevant because it is a condition necessary for
ensuring a coherent inference on the parameters of interest. The parameters of interest are re-
lated to the sampling distributions, which describe the data generating process. If a one-to-one
relationship does not exist between those parameters and the sampling distributions, the param-
eters of interest are not provided with an empirical meaning. In a sampling theory framework,
this fact is made explicit through the impossibility of obtaining unbiased and/or consistent esti-
mators of unidentified parameters (Koopmans & Reiersøl, 1950; Gabrielsen, 1978; San Martín
& Quintana 2002). This limitation seems to be circumvented by a Bayesian approach because
in this set-up it is always possible to compute the posterior distribution of unidentified param-
eters (Lindley, 1971; Poirier, 1998; Gelfand & Sahu 1999; Ghosh, Ghosh, Chen, & Agresti,
2000; Gustafson, 2005). However, taking into account that a statistical model always involves
an identified parametrization (see Florens, Mouchart, & Rolin, 1990, Theorem 4.3.3), it can be
shown that the posterior distribution of an unidentified parameter updates the identified parameter
only, and consequently, does not provide any empirical information on the unidentified param-
eter (San Martín & González, 2010; San Martín, Jara, Rolin, & Mouchart, 2011). Thus, either
from a Bayesian point of view or from a sampling theory framework, identification is an issue
that needs to be considered.

This paper intends to contribute to the complex problem of identifying the 3PL model. It
considers the identification of one of the restricted 3PL models mentioned above, namely the
1PL-G model. As is well known, an identification analysis should begin by making explicit the
sampling distributions as well as the parameters of interest. Three different types of likelihoods
can be considered:

1. A first likelihood corresponds to the probability distribution of the observations, and it is
indexed by both the item parameters (difficulty and guessing) and the abilities.

2. A second likelihood is obtained after integrating out the abilities, which in turn are as-
sumed to be distributed according to a parametric distribution Gϕ known up to a pa-
rameter ϕ. The sampling distribution or likelihood is accordingly indexed by the item
parameters (difficulty and guessing) and ϕ. The abilities are typically obtained in a sec-
ond step through an empirical Bayes procedure.

3. A third likelihood is obtained after integrating out the abilities, which in turn are as-
sumed to be distributed according to an unknown probability distribution G. The sam-
pling distribution or likelihood is accordingly indexed by the item parameters (difficulty
and guessing) and G.

In each of these cases, the parameters indexing the likelihoods represent the parameters of inter-
est. Let us mention that, for the 3PL model, these three perspectives are found in the psychometric
literature. For the first type of likelihood, see Swaminathan and Gifford (1986) and Maris and
Bechger (2009); for the second type, see Bock and Aitkin (1981) and Bock and Zimowski (1997);
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for the third type, see Woods (2006, 2008). Following the terminology of generalized (non-)linear
mixed models (De Boeck & Wilson, 2004), it can be said that the first likelihood considers the
abilities as fixed-effects, whereas the remaining two likelihoods consider the abilities as random-
effects. This terminology helps to make precise whether the abilities are parameters indexing or
not the likelihood function. It can be used in spite of the estimation procedure, particularly in
a Bayesian framework, where the parameters indexing the likelihood are endowed with a prior
distribution. For identification purpose, the estimation procedure is irrelevant and, therefore, this
terminology seems to be useful.

The identification problems corresponding to each of those sampling distributions are quite
different. Some contributions conjecture (Adams, Wilson, & Wang, 1997; Adams & Wu, 2007)
that the identification of the parameters indexing the first type of likelihoods implies the identi-
fication of the parameters indexing the second (and, by extension, the third) type of likelihoods.
However, in the case of the Rasch or 1PL model, it has been shown that such relationships are not
true (see San Martín et al., 2011, Sections 3.2 and 4.2). This result suggests that the identification
problems in the context of 1PL-G models are still open problems.

This paper focuses its attention on these identification problems for the 1PL-G model. It is
mainly motivated by the recent contribution of Maris and Bechger (2009); there it is considered
a likelihood of the first type, where the discrimination parameters are equal to an unknown com-
mon value. They showed that the item parameters and the abilities are not identified. Our paper
studies the identification problem in the three contexts mentioned above: Section 2 discusses the
problem under a fixed-effects specification of the 1PL-G model; Section 3 studies the problem
under a parametric random-effects specification, where the distribution generating the abilities is
assumed to be known up to a scale parameter and a location parameter. Finally, in Section 4, the
problem is analyzed in a semi-parametric context, where the distribution generating the abilities
is considered among the parameters of interest. The main results can be summarized as follows:

1. Under a fixed-effects specification of the 1PL-G model, the item parameters and the abil-
ities are identified if basically one difficulty and one guessing are fixed at 0.

2. Under a parametric random-effects specification, the item parameters and the scale pa-
rameter are identified if basically one guessing is fixed at 0.

3. Under a semi-parametric specification, the item parameters are identified if basically one
difficulty and one guessing are fixed at 0. Using the structure of a specific Hilbert space,
it is shown that the distribution G is not identified by the observations. However, when
an infinite quantity of items is available, it is proved that G becomes identified.

These results are relevant because they show under which conditions a specific guessing behavior,
captured by an item-specific guessing parameter, has an empirical sense. Furthermore, these
results suggest how the identification of the 3PL could rigorously be obtained.

In Section 5, two additional topics are discussed in a general way. First, why the updating
of unidentified parameters reduces to the updating of identified parameters. Second, what is the
possible impact of unidentifiability on Bayesian estimation procedures. The paper concludes with
a discussion, where the practical consequences of our identification results are summarized.

2. Identification Under a Fixed-Effects Specification

The 3PL model, introduced by Birnbaum (1968), is specified as follows: for each person
i = 1, . . . ,N and each item j = 1, . . . , J , the probability that person i answers correctly item j

is given by

P [Yij = 1 | θi, βj ,αj , cj ] = cj + (1 − cj )Ψ
[
αj (θi − βj )

]
, (2.1)
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where Ψ (x) = exp(x)/[1+ exp(x)]. This model assumes that if a person i has ability θi , then the
probability that he/she will know the correct answer of the item j is given by Ψ [αj (θi − βj )];
here αj corresponds to the discrimination parameter of item j , whereas βj is the corresponding
difficulty parameter. It further assumes that if he/she does not know the correct answer, he/she
will guess and, with probability cj , will guess correctly. The parameter cj is accordingly called
the guessing parameter of item j . It follows from these assumptions that the probability of a
correct response to item j by person i is given by (2.1). For details, see Birnbaum (1968) and
Embretson and Reise (2000, Chapter 4).

The model is completed by assuming that the {Yij : i = 1, . . . ,N; j = 1, . . . , J } are mutu-
ally independent. The statistical model (or, likelihood function) describing the data generating
process corresponds, therefore, to the family of sampling distributions indexed by the parameters

(θ1:N,α1:J ,β1:J , c1:J ) ∈ R
N × R

J+ × R
J × [0,1]J ,

where θ1:N = (θ1, . . . , θN), α1:J = (α1, . . . , αJ ), and similarly for β1:J and c1:J .
Recently, Maris and Bechger (2009) considered the identification of a particular case of the

3PL, namely when the discrimination parameters αj , with j = 1, . . . , J , are equal to α. The
parameter indeterminacies inherited from the Rasch model and the 2PL model that should be
removed, are the location and scale ones. Maris and Bechger (2009) removed them by fixing α

at one and constraining β1 and c1 in such a way that β1 = − ln(1 − c1). In this specific case, the
unidentifiability of the parameters of interest persists because (θi, βj , cj ) and (ln(exp(θi) + r),

ln(exp(βj ) − r), (cj exp(βj ) − r)/(exp(βj ) − r)), with a constant r such that

−min
{
exp(θi) : i = 1, . . . ,N

} ≤ r ≤ min
{
cj exp(βj ) : j = 1, . . . , J

}
,

induce the same probability distribution (2.1) (with αj = 1 for all item j ). Thus, “in contrast
to the location and scale indeterminacy, this new form of indeterminacy involves not only the
ability and the item difficulty parameters, but also the guessing parameter” (Maris & Bechger
2009, p. 6).

The question is under which additional restrictions, the parameters (θ1:N,α,β1:J , c1:J ) are
identified by the observations. San Martín, González, and Tuerlinckx (2009) considered this
problem when α = 1. This is the case of the 1PL-G model, which is specified as

P [Yij = 1 | θi, βj , cj ] = cj + (1 − cj )Ψ (θi − βj ). (2.2)

The data generating process is accordingly described by a family of sampling distributions in-
dexed by the parameters

(θ1:N,β1:J , c1:J ) ∈ R
N × R

J × [0,1]J . (2.3)

San Martín et al. (2009) shown that these parameters are identified by the observations under
specific restrictions which are summarized in the following theorem:

Theorem 1. For the statistical model (2.2), the parameters (θ1:N,β1:J , c1:J ) are identified by
the observations provided the following conditions hold:

1. There exists at least two persons such that their probabilities to correctly answer all the
items are different.

2. The parameters c1 and β1 are fixed at 0.

This theorem deserves the following comments:
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1. Under the constraints of Theorem 1, the person specific parameter θi is equal to
ln{P [Yi1 = 1 | θi]/P [Yi1 = 0 | θi]}, the betting odds of a correct answer of person i to
the standard item 1. Thus, under the assumption that there exists an item (the standard
item whose difficulty is fixed at 0) that persons can not answer it correctly by guessing,
abilities can be compared through odd ratios in the same way as it is done in the context
of a fixed-effects 1PL model.

2. Theorem 1 is still valid if the difficulty parameters βj ’s are equal to a common value β

and the guessing parameters cj ’s are equal to a common value c. In this case, only the
person-specific parameters would be identified.

3. In practice, the ability parameters θ1:N are used to decide who passes or fails a test,
used to decide which students should receive more advance or remedial instruction, etc.
If this procedure is done using the 1PL-G model, Theorem 1 provides identification
restrictions under which not only the item parameters are identified, but also the per-
son specific parameters. These parameters can, for instance, be estimated using either a
joint maximum likelihood (JML) estimator, or a Bayesian procedure. Although JML is
in principle feasible, it is known that it produces biased estimations for the 1PL model
due to the incidental parameter problem (Andersen, 1980; Lancaster, 2000; Del Pino,
San Martín, González, & de Boeck, 2008). A solution to this problem is to estimate
IRT models using a marginal maximum likelihood (MML) estimator (Molenaar, 1995;
Thissen, 2009), where the person specific abilities are assumed to be distributed accord-
ing to a distribution Gϕ known up to a parameter ϕ. The person specific ability is esti-
mated through an empirical Bayes procedure. If a Bayesian approach is chosen, a prior
distribution on the identified parameters (β2:J , c2:J , θ1:N) should be specified. It is of-
ten assumed that β2:J , c2:J and θ1:N are a priori independent; in some applications, the
distribution Gϕ is considered as the prior distribution on θ1:N , causing ϕ to become a
hyperparameter; see, for instance, Béguin and Glas (2001) for the 3PNO model.

3. Identification of the Parametric 1PL-G Model

3.1. Random-Effects Specification of the 1PL-G Model

The previous identification results are valid under a fixed-effects specification of the 1PL-G
model, that is, when the abilities are viewed as unknown parameters. However, as mentioned
above, in modern item response theory, θ is usually considered as a latent variable and, there-
fore, its probability distribution is an essential part of the model. The probability distribution
generating the person specific abilities θi ’s is assumed to be a location-scale distribution Gμ,σ

defined as

P [θi ≤ x | μ,σ ] = Gμ,σ
(
(−∞, x]) .= G

((
− ∞,

x − μ

σ

])
, (3.1)

where μ ∈ R is the location parameter and σ ∈ R+ is the scale parameter. In applications, G is
typically chosen as a standard normal distribution.

It is also assumed that for each person i, his/her responses Y i = (Yi1, . . . , YiJ )′ satisfy the
Axiom of Local Independence, namely that Yi1, . . . , YiJ are mutually independent conditionally
on (θi,β1:J , c1:J ). The distribution of Yij depends on (θi, βj , cj ) through the function (2.2). It
is finally assumed that, conditionally on (θ1:N,β1:J , c1:J ), the response patterns Y 1, . . . ,YN are
mutually independent.

The statistical model (or, likelihood function) is obtained after integrating out the random
effects θi ’s. The above-mentioned hypotheses underlying the 1PL-G model imply that the re-
sponse patterns Y 1, . . . ,YN are mutually independent given (β1:J , c1:J ,μ,σ ), with a common
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probability function defined as

P [Y i = yi | β1:J , c1:J ,μ,σ ]

=
∫

R

J∏

j=1

{
P [Yij = 1 | θ,βj , cj ]

}yij
{
P [Yij = 0 | θ,βj , cj ]

}1−yij Gμ,σ (dθ), (3.2)

where yi = (yi1, . . . , yiJ )′ ∈ {0,1}J and P [Yij = 1 | θ,βj , cj ] as defined by (2.2). The parame-
ters of interest are accordingly given by

(β1:J , c1:J ,μ,σ ) ∈ R
J × [0,1]J × R × R+. (3.3)

In order to distinguish the probability distribution (3.2) from the conditional probability P [Yij =
1 | θi, βj , cj ], (3.2) is termed a marginal probability.

Under the iid property of the statistical model generating the Y i ’s, the identification of the
parameters of interest by one observation is entirely similar to their identification by an infinite
quantity of observations (for a proof, see Florens et al., 1990, Theorem 7.6.6). Thus, the identi-
fication problem to be studied in this section consists of establishing restrictions (if necessary)
under which the mapping (β1:J , c1:J ,μ,σ ) �−→ P [Y 1 = y1 | β1:J , c1:J ,μ,σ ] is injective for all
y1 ∈ {0,1}J , where P [Y 1 = y1 | β1:J , c1:J ,μ,σ ] is given by (3.2).

3.2. Identification Strategy

Following San Martín et al. (2009), an identification strategy consists of distinguishing be-
tween parameters of interest and identified parameters. In the case of the statistical model (3.2),
the parameters of interest are (β1:J , c1:J ,μ,σ ). The probabilities of the 2J different possible
patterns are given by

q12···I = P [Y11 = 1, . . . , Y1,J−1 = 1, Y1J = 1 | β1:J , c1:J ,μ,σ ]
q12···Ī = P [Y11 = 1, . . . , Y1,J−1 = 1, Y1J = 0 | β1:J , c1:J ,μ,σ ]

...

q1̄2̄···Ī = P [Y11 = 0, . . . , Y1,J−1 = 0, Y1J = 0 | β1:J , c1:J ,μ,σ ].
(3.4)

The statistical model (3.2) corresponds, therefore, to a multi-nomial distribution (Y 1 | q) ∼
Mult(2J ,q), where q = (q12···I , q12···I−1,Ī , . . . , q1̄,2̄,...,Ī ). It is known that the parameter q of
a multi-nomial distribution is identified by Y 1. We accordingly term the parameter q , identi-
fied parameter; the q’s with less than J subscripts are linear combinations of them and, there-
fore, are identified by the observations. Consequently, the identification of the parameters of
interest follows if a bijective relationship between them and functions of the identified param-
eters q is established. This strategy is followed in the rest of this paper. Taking into account
that a statistical model always involves an identified parameterization (see Florens et al., 1990;
San Martín et al., 2009), the restrictions which are introduced to establishing a bijective rela-
tionship between the parameters of interest and the identified parameters, are not only sufficient
identification conditions, but also necessary conditions.

3.3. Identification when G is Known up to a Scale Parameter

Let us begin the identification analysis of the 1PL-G model when the distribution G gen-
erating the person specific abilities is known up to the scale parameter σ . The corresponding
identification analysis is divided into three steps:
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STEP 1: It is shown that the difficulty parameters β1:J are a function of the scale parameter σ ,
the guessing parameters c1:J and the identified parameters P [Yij = 0 | β1:J , c1:J , σ ], with j =
1, . . . , J .

STEP 2: It is shown that the scale parameter σ is a function of the guessing parameters c1
and c2, as well as of the identified parameters P [Yi1 = 1, Yi2 = 1 | β1:J , c1:J , σ ], P [Yi1 =
1 | β1:J , c1:J , σ ] and P [Yi2 = 1 | β1:J , c1:J , σ ].

STEP 3: It is finally shown that the difficulty parameters β2:J and the guessing parameters c2:J
are functions of (β1, c1) and identified parameters which in turn depend on q .

Combining these steps, the identification of (β1:J , c2:J , σ ) by both the observations and c1 is
obtained. Therefore, one identification restriction is needed, namely c1 = 0. Let us mention that
both STEP 1 and STEP 2 are valid for all the conditional specifications of the form

P [Yij = 1 | θi, βj , cj ] = cj + (1 − cj )F (θi − βj ), (3.5)

where F is a strictly increasing continuous distribution function with a positive density function
on R, and not only for the logistic distribution Ψ . However, STEP 3 depends on the logistic
function Ψ . In what follows, these steps are duly detailed.

3.3.1. Step 1 for the Parametric 1PL-G Model Let

ωj
.= P [Yij = 0 | β1:J , c1:J , σ ] = δjp(σ,βj ), (3.6)

where

p(σ,βj ) =
∫

R

{
1 − F(σθ − βj )

}
G(dθ), (3.7)

with F a strictly increasing continuous distribution function, and δj
.= 1 − cj . The parameter ωj

is identified because it is a function of the identified parameter q; see Section 3.2.
The function p(σ,βj ) is a continuous function in (σ,βj ) ∈ R+ × R that is strictly increas-

ing in β ∈ R because F is a strictly increasing continuous function (in particular, the logistic
distribution Ψ satisfies these properties). Furthermore, p(σ,−∞) = 0 and p(σ,+∞) = 1, and
consequently,

0 ≤ ωj ≤ δj for all j = 1, . . . , J. (3.8)

Therefore, if we define

p̄(σ, ε)
.= inf

{
β : p(σ,β) > ε

}
, (3.9)

it is clear that

p̄
[
σ,p(σ,β)

] = β for all β. (3.10)

Taking into account relation (3.8), and assuming that δj > 0 for each item j , it follows that
βj = p̄[σ,ωj/δj ]; that is, for all j = 1, . . . , J , the item parameter βj is a function of the scale
parameter σ , of the identified parameter ωj and of the non-guessing parameter δj (and, by ex-
tension, of the guessing parameter cj ).

3.3.2. Step 2 for the Parametric 1PL-G Model Let

ω12
.= P [Yi1 = 0, Yi2 = 0 | β1:J , c1:J , σ ]
= δ1δ2

∫

R

{
1 − F(σθ − β1)

}{
1 − F(σθ − β2)

}
G(dθ). (3.11)
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Using STEP 1, the identified parameter ω12 can be written as a function of σ, δ1, δ2,ω1, and ω2
in the following way:

ω12
.= ϕ(σ, δ1, δ2,ω1,ω2)

= δ1δ2

∫

R

{
1 − F

[
σθ − p

(
σ,

ω1

δ1

)]}{
1 − F

[
σθ − p

(
σ,

ω2

δ2

)]}
G(dθ).

Now, if the distribution function F has a continuous density function f strictly positive on R,
then it can be shown that the function ω12 = ϕ(σ, δ1, δ2,ω1,ω2) is a strictly increasing continu-
ous function of σ and, therefore, σ = ϕ(ω12, δ1, δ2,ω1,ω2), where

ϕ(ω, δ1, δ2,ω1,ω2) = inf
{
σ : ϕ(σ, δ1, δ2,ω1,ω2) > ω

}
. (3.12)

In other words, σ becomes a function of the identified parameters ω1,ω2 and ω12, as well as of
the non-guessing parameters δ1 and δ2. The details are developed in Appendix A.

3.3.3. Step 3 for the Parametric 1PL-G Model This step essentially depends on the logis-
tic distribution Ψ , and consequently, the arguments below are performed using the conditional
probability (2.2). Let J ≥ 3, j 
= 1 and k 
= j (with k, j ≤ J ). Define the identified parameters
pJ

0 , pJ
j and pJ

jk as follows:

pJ
0

.= P

[ ⋂

1≤j≤J

{Yij = 0}
∣∣
∣ β1:J , δ1:J , σ

]
=

∏

1≤j≤J

δj × IJ
0 (β1:J , σ );

pJ
j

.= P

[ ⋂

1≤k≤J,k 
=j

{Yik = 0}
∣∣∣ β1:J , δ1:J , σ

]
=

∏

1≤k≤J,k 
=j

δk

{
IJ

0 (β1:J , σ ) + e−βj I J
1 (β1:J , σ )

};

pJ
jk

.= P

[ ⋂

1≤r≤J,r 
=j,r 
=k

{Yir = 0}
∣∣∣ β1:J , δ1:J , σ

]

=
∏

1≤r≤J,r 
=j,r 
=k

δr

{
IJ

0 (β1:J , σ ) + (
e−βj + e−βk

)
IJ

1 (β1:J , σ ) + e−βj e−βk I J
2 (β1:J , σ )

}
,

where

IJ
0 (β1:J , σ ) =

∫

R

∏

1≤j≤J

1

1 + eσθ−βj
G(dθ),

I J
1 (β1:J , σ ) =

∫

R

eσθ
∏

1≤j≤J

1

1 + eσθ−βj
G(dθ),

I J
2 (β1:J , σ ) =

∫

R

e2σθ
∏

1≤j≤J

1

1 + eσθ−βj
G(dθ).

Taking into account that, for each j = 1, . . . , J , δj > 0 and βj ∈ R, it follows that

pJ
j

pJ
0

= 1

δj

+ e−βj

δj

g(β1:J , σ ),

pJ
jk

pJ
0

= 1

δj δk

{
1 + (

e−βj + e−βk
)
g(β1:J , σ ) + e−βj e−βkh(β1:J , σ )

}
,
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where

g(β1:J , σ ) = IJ
1 (β1:J , σ )

IJ
0 (β1:J , σ )

and h(β1:J , σ ) = IJ
2 (β1:J , σ )

IJ
0 (β1:J , σ )

.

Using these definitions, the following three propositions are established.

Proposition 1. Let J ≥ 3 and j 
= k. Then

rJ
jk

.= pJ
jk

pJ
0

− pJ
j

pJ
0

pJ
k

pJ
0

= e−βj e−βk

δj δk

k(β1:J , σ ),

where k(β1:J , σ ) = h(β1:J , σ ) − g(β1:J , σ )2 > 0.

The positivity of k(β1:J , σ ) follows after noticing that g(β1:J , σ ) = EGβ1:J ,σ
(eσθ ) and

h(β1:J , σ ) = EGβ1:J ,σ
(e2σθ ), with

Gβ1:J ,σ (dθ)
.= 1

IJ
0 (β1:J , σ )

∏

1≤j≤J

1

1 + eσθ−βj
G(dθ).

Thus, Proposition 1 ensures that rJ
jk > 0 and, consequently, the following proposition can be

established.

Proposition 2. Let J ≥ 3 and j 
= k, with j 
= 1. Then

uj
.= rJ

1k

rJ
jk

= δj

δ1
eβj −β1 ,

and consequently, uj > 0. Moreover, {uj : 2 ≤ j ≤ J } are identified parameters.

Proposition 3. Let J ≥ 3 and j 
= 1. Then

vj
.= pJ

j

pJ
0

uj − pJ
1

pJ
0

= 1

δ1

(
eβj −β1 − 1

)
,

and consequently, vj ∈ R. Moreover, {vj : 2 ≤ j ≤ J } are identified parameters.

Propositions 2 and 3 entail the following identities: for j = 2, . . . , J ,

(i) δj = uj δ1

vj δ1 + 1
, (ii) βj = β1 + ln(vj δ1 + 1). (3.13)

These identities require that, for each j = 2, . . . , J , vj δ1 + 1 > 0. By Proposition 3, this
inequality is equivalent to eβj −β1 > 0, which is always true. Thus, the inequality vj δ1 + 1 > 0
does not restrict the sampling process.

3.3.4. Main Result for the Parametric 1PL-G Model Using the previous results, the param-
eters (β1:J , c2:J , σ ) can be written as a function of c1, in addition to other identified parameters:
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1. Equality (3.13.i) implies that, for each j = 2, . . . , J , cj is a function of c1 and (uj , vj ).
2. STEP 2 and equality (3.13.i) implies that

σ = ϕ

[
ω12,1 − c1,

u2(1 − c1)

v2(1 − c1) + 1
,ω1,ω2

]
.= h(1 − c1,ω1,ω2,ω12, u2, v2),

where ϕ is defined by (3.12).
3. STEP 1, along with the previous conclusion, imply that

β1 = p
[
h(1 − c1,ω1,ω2,ω12, u2, v2),ω1/(1 − c1)

]
,

where p is defined by (3.9).
4. STEP 1 and STEP 2, along with the previous conclusion, imply that, for each j =

2, . . . , J ,

βj = p

[
h(1 − c1,ω1,ω2,ω12, u2, v2),

ω1

(1 − c1)

]
+ ln

[
vj (1 − c1) + 1

]
.

The previous equalities allow to make explicit the identified parametrization of the random-
effects 1PL-G model; this parameterization is a function of the guessing parameter c1. Thus,
the sampling process depends on the parameters of interest (β1:J , c1:J , σ ) through c1 only. It is
actually fully characterized by the following 2J − 1 equations: for K ⊂ {1, . . . , J },

P

[⋂

j∈K
{Yij = 0}

∣∣∣ β1:J , c1:J , σ

]

=
∏

j∈K
uj ×

∫

R

G(dθ)
∏

j∈K{vj + 1
1−c1

+ eh(1−c1,ω1,ω2,ω12,u2,v2)θ

(1−c1)e
p[h(1−c1,ω1,ω2,ω12,u2,v2),ω1/(1−c1)] }

= P

[ ⋂

j∈K
{Yij = 0}

∣∣
∣ c1

]
. (3.14)

It should be remarked that the information provided by these 2J − 1 marginal probabilities is
exactly the same as the information provided by the marginal probabilities q’s as defined in
(3.4).

Consequently, the parameters of interest (β1:J , c1:J , σ ) becomes identified if the guessing
parameter c1 is fixed at a specific value. In principle, this value could be arbitrarily chosen.
However, according to inequality (3.8), c1 ≤ P [Yi1 = 1 | c1]. Since the marginal probability
P [Yi1 = 1 | c1] is determined empirically, c1 should be fixed at 0. By so doing, the same items
can be applied to various samples of persons.

We summarize these findings in the following theorem.

Theorem 2. For the statistical model (3.2) induced by both the 1PL-G model (2.2) and the per-
son specific abilities distributed according to a distribution G known up to the scale parameter σ ,
the parameters of interest (β1:J , c2:J , σ ) are identified by Y 1 provided that

1. At least three items are available.
2. The guessing parameter c1 is fixed at 0.
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Moreover, the specification of the model entails that

0 ≤ cj ≤ P [Yij = 1 | β1:J , c1:J , σ ] for every j = 2, . . . , J, (3.15)

where

cj = 1 − pJ
0 pJ

1k − pJ
1 pJ

k

pJ
jk(p

J
0 − pJ

1 ) + pJ
j (pJ

1k − pJ
k )

, with k 
= 1, j. (3.16)

This theorem deserves the following comments:

1. Condition (2) of Theorem 2 implies that the marginal probability that a person i correctly
answers the item 1 is given (see relations (3.6) and (3.7)) by

P [Yi1 = 1 | β1:J , c1:J , σ ] =
∫

R

exp(σθ − β1)

1 + exp(σθ − β1)
G(dθ).

This means that the test (or measurement instrument) must contain an item (labeled with
the index 1) such that each person answers it without guessing. In other words, the iden-
tification restriction c1 = 0 implies a restriction on the design of the multiple-choice test,
an aspect that the practitioner should carefully consider. A relevant question is the fol-
lowing: How can it be ensured that each person answers a specific item without guessing?
By including in the test a constructed response item: each person correctly or incorrectly
answer it, but it is not possible to correctly answering it by guessing.1

2. Inequality (3.15) not only ensures the possibility to test the null hypothesis cj = 0, but
also to specify the probability of a correct answer with the 1PL for some items, and with
the 1PL-G for other items. This last situation corresponds to mixed format tests where
some items are multiple choice, while some other items are constructed responses, scored
right or wrong by some scoring mechanism.

3. According to equality (3.16), the guessing parameter cj is a function of marginal proba-
bilities, which in turn can be estimated from the data through relative frequencies. This
suggests to use these relative frequencies as an estimator of cj . It should be mentioned
that these estimates do not depend on the distribution Gσ generating the person specific
abilities.

4. It should also be remarked that βj = β1 for every j = 2, . . . , J if and only if vj = 0 for
every j = 2, . . . , J . In this case, (β1, c2:J , σ ) are identified provided that c1 is fixed at 0.
Similarly, cj = c1 for every j = 2, . . . , J if and only if vj (1 − c1) + 1 = uj for every
j = 2, . . . , J . This last equality implies that c1 is identified and, therefore, (β1:J , c1, σ )

are identified without identification restrictions.

Let us summarize the last remark in the following corollary:

Corollary 1. Consider the statistical model (3.2) induced by both the 1PL-G model (2.2) and
the person specific abilities distributed according to a distribution G known up to the scale
parameter σ . If at least three items are available, then the following statements hold:

1. If the items have a common difficulty parameter β1, then (β1, c2:J , σ ) are identified by
one observation if c1 is fixed at 0.

2. If the items have a common guessing parameter c1, then (β1:J , c1, σ ) are identified by
one observation.

1This suggestion is due to Paul De Boeck.
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3.3.5. Identification when G is Known up to Both a Location and a Scale Parameter If the
distribution G generating the abilities is known up to both a location parameter μ and a scale
parameter σ , it is then necessary to impose an identification restriction not only on a guessing
parameter, but also on the difficulty parameters. As a matter of fact, let Gμ,σ be a probability
distribution given by (3.1). Relation (3.6) is, therefore, rewritten as

ω̃j
.= P [Yij = 0 | β1:J , δ1:J , σ,μ] = δj

∫

R

{
1 − F(σθ + μ − βj )

}
G(dθ)

for all j = 1, . . . , J . Since F is a strictly increasing continuous function, we have that, for all
j = 1, . . . , J , βj − μ is a function of (σ, ω̃j , δj ). Following the arguments developed in Sec-
tions 3.3.2 and 3.3.3, it follows that (β1 − μ, . . . , βJ − μ,c2, . . . , cJ , σ ) is identified by the
observations given c1. Therefore, under a restriction of the form a′β1:J = 0 such that 1′

J a 
= 0,
with a ∈ R

J known and 1J = (1, . . . ,1)′ ∈ R
J , the parameters (β1:J , c2:J ,μ,σ ) are identified

by the observations. Summarizing, we establish the following corollary.

Corollary 2. For the statistical model (3.2) induced by both the 1PL-G model (2.2) and the
person specific abilities distributed according to a distribution G known up to both the loca-
tion parameter μ and the scale parameter σ , the parameters of interest (β1:J , c2:J ,μ,σ ) are
identified by Y 1 provided that

1. At least three items are available.
2. The guessing parameter c1 is fixed at 0.
3. a′β1:J = 0 such that 1′

J a 
= 0, with a ∈ R
J known.

This corollary deserves the following comments:

1. Condition (3) imposes a restriction on the difficulty parameters. Typical choices are
a = 1J , which leads to restricting the difficulty parameters as

∑J
j=1 βj = 0; or a =

(1,0, . . . ,0)′, which leads to imposing β1 = 0. It is often said that this type of restrictions
lead to fix the scale of the difficulty parameters. However, after considering the proof
underlying this corollary, it can be said that, on the one hand, such restrictions lead to
separate the location parameter from the difficulty parameters and, on the other hand,
excludes equal difficulties of all the items. This is not the case when the person specific
abilities are distributed according to Gσ . In practice this means that, if the data are ana-
lyzed using a 1PL-G model with (θi | μ,σ) ∼ Gμ,σ , the multiple-choice test is supposed
to contain at least two items with different difficulties, in addition to an item such that
c1 = 0. This structure of the measurement instrument is assumed by the 1PL-G model
when (θi | μ,σ) ∼ Gμ,σ , so it can not be statistically tested by the model.

2. The arguments underlying Corollary 2 lead to stating the following remark. Consider
μ = 0; Equations (3.6) and (3.7) suggest that the parameter σ can be viewed as a dis-
crimination parameter common to all the items. If this is the case, then G should be fully
known. If not, let α be the discrimination parameter common to all the items and let σ

be the scale parameter of G. Defining σ̃
.= σα, the arguments developed in STEPS 1, 2,

and 3, lead to the conclusion that σ̃ is identified. Therefore, (α,σ ) and σ̃ are in bijection
if either α is fixed at 1, or σ is fixed at 1.

3. Let us also remark that these considerations, along with the arguments developed in
STEPS 1 and 2 above, provide insight to establish the identification of the random-effects
2PL model. Details are provided in Appendix B.
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4. Identification of the Semi-parametric 1PL-G Model

Many IRT models are fitted under the assumption that θi is normally distributed with an
unknown variance. The use of a distribution for θi (as opposed to treating θi as a fixed effect) is
a key feature of the widely use marginal maximum likelihood method. The normal distribution
is convenient to work with, specially because is available in statistical packages such as SAS
(Proc. NLMIXED) or R (lme4, ltm). However, as pointed out by Woods and Thissen (2006) and
Woods (2006), there exist specific fields, such as personality and psychopathology, in which the
normality assumption is not realistic (for references, see Woods, 2006). In these fields, it could
be argued that psychopathology and personality variables are likely to be positively skewed,
because most persons in the general population have low pathology, and fewer persons have
severe pathology. However, the distribution G of θi is unobservable and, consequently, though
a researcher may hypothesize about it, it is not known in advance of an analysis. Therefore,
any a priori parametric restriction on the shape of the distribution G could be considered as a
mis-specification.

These considerations lead to extending parametric IRT models by considering the distri-
bution G as a parameter of interest and, therefore, to estimating it by using non-parametric
techniques. Besides the contributions of Woods and Thissen (2006) and Woods (2006, 2008),
Bayesian non-parametric methods applied to IRT models should also be mentioned; see, among
others, Roberts and Rosenthal (1998), Karabatsos and Walker (2009), and Miyazaki and Hoshino
(2009). In spite of these developments, it is relevant to investigate whether the item parameters
as well as the distribution G of an IRT model—in our case the 1PL-G model—are or not iden-
tified by the observations. If such parameters are identified, then a semi-parametric extension
of the 1PL-G model would provide greater flexibility than does the assumption of non-normal
parametric form for G.

4.1. Semi-parametric Specification of the 1PL-G Model

A semi-parametric 1PL-G model is obtained after substituting the parametric hypothesis
(3.1) by the following hypothesis:

(θi | G)
iid∼ G, (4.1)

where G is a probability distribution on (R, B). The rest of the model structure is as specified in
Section 3.1. The statistical model is obtained after integrating out the person specific abilities θi ’s.
The response patterns Y 1, . . . ,YN are mutually independent conditionally on (β1:J , c1:J ,G).
The common distribution of Y i is given by

P [Y i = y | β1:J , c1:J ,G] =
∫

R

J∏

j=1

{
cj + (1 − cj )

exp[yj (θ − βj )]
1 + exp(θ − βj )

}
G(dθ), (4.2)

where y ∈ {0,1}J . The parameters of interest and the corresponding parameter space are

(β1:J , c1:J ,G) ∈ R
J × [0,1]J × P (R, B).

4.2. Identification Analysis Under a Finite Quantity of Items

Similarly to the random-effects 1PL-G model (see Section 3.2), the statistical model induced
by the semi-parametric 1PL-G model corresponds to a multi-nomial distribution Mult(2J ,q),



354 PSYCHOMETRIKA

where the identified parameter q = (q12···I , q12···I−1,Ī , . . . , q1̄,2̄,...,Ī ) is given by

q12···I = P [Y11 = 1, . . . , Y1,J−1 = 1, Y1J = 1 | β1:J , c1:J ,G]
...

q1̄2̄···Ī = P [Y11 = 0, . . . , Y1,J−1 = 0, Y1J = 0 | β1:J , c1:J ,G].
(4.3)

These marginal probabilities are of the form (4.2).
The parameters of interest (β1:J , c1:J ,G) become identified if they can be written as func-

tions of q . The identification analysis developed in the context of the random-effects 1PL-G
actually provides insight for the identification of (β1:J , c1:J ,G). As a matter of fact, in the para-
metric case the identification analysis was based on three steps, each of them involving specific
features:

1. STEPS 1 and 2 essentially depend on the parameter σ indexing the distribution generating
the person specific abilities. More specifically, the item parameters β1:J are written as a
function of c1:J and σ , whereas σ is written as a function of c1 and c2; see Sections 3.3.1
and 3.3.2.

2. STEP 3 first establishes that the item parameters (β2:J , c2:J ) can be written as a func-
tion of β1 and c1. Second, using STEPS 1 and 2, it is concluded that (β1:J , c2:J , σ ) is a
function of c1; see Section 3.3.3.

Thus, STEPS 1 and 2 critically depend on the parametric hypothesis which is assumed on the
distribution generating the random effects θi ’s, whereas a part of STEP 3 does not depend on it.
Moreover, in the random-effects 1PL-G model, the guessing parameters can be written as a func-
tion of the marginal probabilities and, therefore, do not depend on any specific distribution G;
see Theorem 2, equality (3.16). These considerations suggest that STEP 3 can be used in the
identification analysis of (β1:J , c1:J ,G).

4.2.1. Identification of the Item Parameters More precisely, let J ≥ 3, j 
= 1 and k 
= j

(with k, j ≤ J ). Similarly to Section 3.3.3, we define the identified parameters pJ
0 , pJ

j , and pJ
jk

as a function of the marginal probabilities given (β1:J , δ1:J ,G). Thus, for instance, pJ
0 is defined

as

pJ
0

.= P

[ ⋂

1≤j≤J

{Yij = 0}
∣∣∣ β1:J , δ1:J ,G

]
=

∏

1≤j≤J

δj × IJ
0 (β1:J ,G),

where IJ
0 (β1:J ,G) = ∫

R

∏
1≤j≤J

1
1+e

θ−βj
G(dθ); similarly, for pJ

j and pJ
jk . Taking into account

that, for each j = 1, . . . , J , δj > 0 and βj ∈ R, it follows, by the same arguments developed in
Section 3.3.3, that

δj = uj δ1

vj δ1 + 1
, βj = β1 + ln(vj δ1 + 1), j = 2, . . . , J, (4.4)

where uj and vj are defined as in Propositions 2 and 3 (with the corresponding change of nota-
tion). Since uj ’s and vj ’s are identified parameters, the following theorem can be established.

Theorem 3. For the statistical model (4.2) induced by the semi-parametric 1PL-G model, the
item parameters (β2:J , c2:J ) are identified by Y 1 provided that

1. At least three items are available.
2. β1 = 0 and c1 = 0.
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Moreover, under these identification restrictions, the item parameters can be expressed in terms
of marginal probabilities; that is,

(i) βj = ln(vj + 1) = ln

[
pJ

j pJ
1k − pJ

1 pJ
jk

pJ
0 pJ

jk − pJ
j pJ

k

+ 1

]
, for k 
= 1, j ;

(ii) cj = 1 − uj

vj + 1
= 1 − pJ

0 pJ
1k − pJ

1 pJ
k

pJ
jk(p

J
0 − pJ

1 ) + pJ
j (pJ

1k − pJ
k )

, for k 
= 1, j.

(4.5)

This theorem deserves the following comments:

1. Under condition (4.4), the statistical model can be written as follows: for every K ⊂
{1, . . . , J },

pK
.= P

[⋂

j∈K
{Yij = 0}

∣∣∣ β1:J , c1:J ,G

]

=
∏

j∈K
uj ×

∫

R

G(dθ)
∏

j∈K{vj + 1
1−c1

+ e−β1

1−c1
eθ }

= P

[⋂

j∈K
{Yij = 0}

∣∣∣ β1, c1,G

]
. (4.6)

Thus, the sampling process depends on the parameters of interest (β1:J , c1:J ,G) through
(β1, c1,G) only. Therefore, both the item parameters and the guessing parameters be-
come identified if β1 and c1 are fixed at 0. Regarding the identification of G, see Sec-
tion 4.2.2.

2. Condition (2) of Theorem 3 implies that the marginal probability that a person i correctly
answer the standard item 1 is given by

P [Yi1 = 1 | β1:J , c1:J ,G] =
∫

R

exp(θ)

1 + exp(θ)
G(dθ).

As in the random-effects case (see Section 3.3.4), this means that the measurement in-
strument must contain an item (labeled here with 1) such that each person answers it
without guessing.

3. As in the random-effects 1PL-G model, the identification of the guessing parameters
is obtained without depending on specific properties of the distribution G; see Equa-
tions (3.16) and (4.5.ii). Additionally, in the semi-parametric case, the identification of
the difficulty parameters is also obtained independent of G; see Equation (4.5.i). How-
ever, in the random-effects 1PL-G model, the item parameters depend on the scale pa-
rameter of G, and consequently, on the dependency between two items; see Equations
(3.11) and (3.12).

4. It should also be mentioned that equalities (4.5) provide an explicit statistical meaning
for the item parameters in terms of the data generating process. This suggests to use them
as estimators of βj and cj from the data through relative frequencies.

4.2.2. Is the Distribution G Identified? Let us now consider the possible identification of
the distribution G generating the random effects. Consider the 2J −1 equations of the form (4.6);
taking into account that uj ’s as well as pK are identified, and using the identification restrictions
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established in Theorem 3, it follows that, for every subset K ⊂ {1, . . . , J }, except the empty set,

mG(K)
.=

∫

R

G(dθ)
∏

j∈K[vj + 1 + eθ ] (4.7)

is identified by the observations. Denote {mG(K) : K ⊂ {1, . . . , J } \ ∅} as mG.
The question is to know whether the identification of these 2J − 1 functionals ensure the

identification of G; that is, if two distributions G1 and G2 on (R, B) satisfy mG1 = mG2 , is it true
that G1 = G2? We argue that those 2J − 1 equations are far from being enough to identify G. As
a matter of fact, let us suppose that G has a density function g with respect to a σ -finite measure
λ on (R, B), that is, g = dG/dλ. Suppose furthermore that g ∈ L2(R, B, λ). Then (4.7) can be
written as

mg(K) =
∫

R

g(θ)dλ(θ)
∏

j∈K[vj + 1 + eθ ] ∀K ⊂ {1, . . . , J − 1}, with K 
= ∅. (4.8)

Since vj > −1 for each j , it follows that

0 <
∏

j∈K

1

vj + 1 + eθ
≤ d ∀K ⊂ {1, . . . , J }, with K 
= ∅

where d is a positive real constant. Therefore,

fK(θ)
.=

∏

j∈K

1

vj + 1 + eθ
∈ L2(R, B, λ)

for each K ⊂ {1, . . . , J }, with K 
= ∅.
Define the functional T : L2(R, B, λ) −→ R

2J −1 as T g = mg , where

mg = (
mg

({1}),mg

({2}), . . . ,mg

({1, . . . , J }))

and mg(K) is, for each set K, defined by (4.8). Thus, the identification of g follows if

T (g1 − g2) = 0 =⇒ g1 = g2.

If this is the case, then g1 − g2 ∈ L2(R, B, λ) is orthogonal to each fK , with the inner product

(f,h) =
∫

R

f (θ)h(θ) dλ(θ), for f,h ∈ L2(R, B, λ).

It follows that g1 − g2 is orthogonal to N , the linear space generated by {fK : K ⊂
{1, . . . , J }, K 
= ∅}. Since N is of finite dimension, it is therefore closed in L2(R, B, λ). Taking
into account that g1 − g2 = 0 if and only if (g1 − g2, f ) = 0 for all f ∈ L2(R, B, λ) (Halmos,
1951, Theorem 1, Section 4), if g1 − g2 = 0 then N = L2(R, B, λ), which is impossible because
L2(R, B, λ) is an infinite dimensional linear space.

Summarizing, we obtain the following theorem.

Theorem 4. For the statistical model (4.2) induced by the semi-parametric 1PL-G model, as-
sume that there are at least three items and that cj > 0 for each j = 2, . . . , J . Then the (2J − 1)-
dimensional vector mG is identified by the observations, provided that β1 and c1 are fixed, but
the distribution G generating the individual abilities is not identified.
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It is relevant to inquire whether β1 and/or c1 can be identified if the mean of θ is fixed at 0.
Taking into account Theorems 3 and 4, it can be stated that the only way to identify β1 and/or
c1 through restrictions on G is by restricting functionals of the type (4.8). More specifically, we
known that the difficulty parameters and the guessing parameters are functions of both (β1, c1)

and the identified parameters {(uj , vj ) : j = 2, . . . , J }. On the other hand, the only information
of G that is identified corresponds to the identified functionals

m̃G(K) =
∫

R

G(dθ)
∏

j∈K
[vj + 1

1−c1
+ eθ−β1

1−c1
]

∀K ⊂ {1, . . . , J }, with K 
= ∅. (4.9)

Therefore, β1 and c1 become identified if at least two of these functionals are fixed at some
specific values. For instance, we could choose the functionals m̃G({2}) and m̃G({3}) and to study
if it is enough to solve them for β1 and c1. However, it is not clear which specific characteristics
of G are being fixed and, therefore, it is hard to propose this way as a solution to the identification
problem. In any case, it is clear that the possibility of identifying β1 and/or c1 by fixing the mean
of θ is far from being feasible since such a mean can not be written as a function of m̃G(K) for
some K. The situation is different when G is identified by the observations; see Theorem 5.

4.3. Identification Analysis Under an Infinite Quantity of Items

The identification arguments previously developed, either in the parametric case or in the
semi-parametric case, have a common feature, namely to write the parameters of interest as
functions of identified parameters. Now the problem consists of writing the distribution G as
a function of identified parameters when an infinite number of items is available. These types
of relationships can be developed in a Bayesian framework because in such a framework, the
concept of identification reduces to a condition of measurability with respect to functionals of
the sampling process.

4.3.1. Bayesian Identification In order to define Bayesian identification, it is necessary
first to define the concept of a sufficient parameter.

Definition 1. Consider the Bayesian model defined by the joint probability distribution on
(Y ,ϑ). A function ψ

.= g(ϑ) of the parameter ϑ is a sufficient parameter for Y if the condi-
tional distribution of the sample Y given ψ and ϑ is the same as the distribution of the sample Y

given ψ , that is, Y⊥⊥ϑ | ψ .

Definition 1 implies that the sampling distribution generating Y is completely determined
by the sufficient parameter ψ , being ϑ redundant. In fact, by definition of conditional inde-
pendence, Y⊥⊥ϑ | ψ implies that E[h(Y ) | ϑ] = E[h(Y ) | ψ] for every measurable function h.
Equivalently, by the symmetry of a conditional independence relation, it can also be concluded
that ψ is a sufficient parameter if the conditional distribution of the redundant part of ϑ , given
the sufficient parameter ψ , is not updated by the sample, that is, E[f (ϑ) | Y ,ψ] = E[f (ϑ) | ψ]
for every measurable function f .

Because of the numerous sufficient parameters in a given problem, one might ask whether
one sufficient parameter ψ still contains redundant information about the sampling process. Sup-
pose that there exists a function of ψ , say ψ1, which is also a sufficient parameter for Y , that is,
Y⊥⊥ϑ | ψ1. It follows that Y⊥⊥ψ | ψ1 and, therefore, the sampling process is fully characterized
by ψ1, being ψ redundant in the sense that E[h(Y ) | ϑ] = E[h(Y ) | ψ] = E[h(Y ) | ψ1], for
every measurable function h, or that E[f (ψ) | Y ,ψ1] = E[f (ψ) | ψ1], for every measurable
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function f . Clearly, ψ1 should be preferred over ψ because it contains less redundant informa-
tion about the sampling process. In fact, a parameterization that achieves the most parameter
reduction while retaining all the information about the sampling process should be considered
preferable. The definition of such a parameter is formalized next. For the Bayesian model defined
on (Y ,ϑ), ϑmin is a minimal sufficient parameter for Y if the following conditions are satisfied:
(i) ϑmin is a measurable function of ϑ , (ii) ϑmin is a sufficient parameter, and (iii) for any other
sufficient parameter ψ , ϑmin is a measurable function of it. From this definition, it follows that
ϑmin does not contain redundant information about the sampling process because there does not
exist a non-injective function of it, say ϕ, such that Y⊥⊥ϑmin | ϕ. These considerations lead to
the definition of Bayesian identification (Florens & Rolin, 1984).

Definition 2. Consider the Bayesian model defined by the joint probability distribution on
(Y ,ϑ). The parameter ϑ is said to be Bayesian identified or b-identified if it is a minimal suffi-
cient parameter.

The definition of b-identification depends on the prior distribution through its null sets only
(for details, see, Florens et al., 1990; San Martín et al., 2011, Section 3). An important conse-
quence of this is that unidentified parameters remain unidentified even if proper and concentrated
priors are considered. Unidentified parameters can become identified if and only if the prior null
sets are changed, which is equivalent to introducing dogmatic constraints.

From an operational point of view, it can be shown that the minimal sufficient parameter is
generated by the family of all the sampling expectations E[h(Y ) | ϑ], where h ∈ L1(Ω, Y ,Π),
with L1(Ω, Y ,Π) being the set of integrable functions defined on the sample space Ω and
measurable with respect to the σ -field Y generated by Y ; for details and proof, see Florens et
al. (1990, Chapter 4). Let σ {E[h(Y ) | ϑ] : h ∈ L1(Ω, Y ,Π)} be the σ -field generated by the
sampling expectations. By definition of conditional expectation, this σ -field is contained in the
σ -field generated by ϑ . Therefore, to show that ϑ is b-identified by Y , it is needed to show
that ϑ is measurable w.r.t. σ {E[h(Y ) | ϑ] : h ∈ L1(Ω, Y ,Π)}, or equivalently by the Doob–
Dynkin lemma (see Rao, 2005, Chapter 2.1, Proposition 3), that σ {ϑ} ⊂ σ {E[h(Y ) | ϑ] : h ∈
L1(Ω, Y ,Π)}.

4.3.2. Embedding Previous Identification Results in a Bayesian Framework The identifi-
cation analysis developed in Sections 3 and 4.2 is still valid under a Bayesian approach, provided
that the parameters are endowed of proper prior distributions absolutely continuous with respect
to the Lebesgue measure. As a matter of fact, let us consider the results established in Section 4.2.
The corresponding Bayesian model is defined on (Y 1,β1:J , c1:J ,G), where the conditional dis-
tribution of Y 1 given (β1:J , c1:J ,G) is of the form (4.2), and the parameters are endowed with
a prior structure (which is detailed next). According to Section 4.3.1, the identified parameter
corresponding to this model is given by σ {E[h(Y 1) | β1:J , c1:J ,G] : h ∈ L1({0,1}J , Y ,Π)}.

The goal is to prove under which conditions the parameters of interest (β1:J , c1:J ,G) are
measurable with respect to σ {E[h(Y 1) | β1:J , c1:J ,G] : h ∈ L1({0,1}J , Y ,Π)}. The standard
identification argument underlying Theorems 3 and 4 was to write the parameters of interest as
a function of identified parameters; these parameters correspond to functionals of the sampling
process. Thus, in Theorem 3, the difficulty parameters are a function of the identified parameters
{vj : j = 2, . . . , J }. By construction, these parameters are functions of marginal probabilities of
the form (4.2). Therefore, β2:J is measurable with respect to σ {E[h(Y 1) | β1:J , c1:J ,G] : h ∈
L1({0,1}J , Y ,Π)}. Similarly, for the guessing parameters c1:J and the functionals mG.

The identification results obtained in Theorems 3 and 4 can consequently be summarized in
a Bayesian framework as follows (we include β1 and c1 since they are fixed at 0):

σ {β1:J , c1:J ,mG} ⊂ σ
{
E

[
h(Y 1) | β1:J , c1:J ,G

] : h ∈ L1({0,1}J , Y ,Π
)} ⊂ σ {β1:J , c1:J ,G}.
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The first inclusion means that (β1:J , c1:J ,mG) are b-identified by Y 1. The last inclusion shows
that the parameters of interest (β1:J , c1:J ,G) are not b-identified by Y 1; if it were, then

σ {β1:J , c1:J ,G} ⊂ σ {β1:J , c1:J ,mG},
which is impossible since G can not be obtained by measurable operations from mG; see Sec-
tion 4.2.2.

4.3.3. Identification of the Parameters of Interest According to Theorem 4, the functionals
m̃G(K) defined by (4.9) are b-identified by one observation. Defining X = 1

1−c1
+ exp(θ−β1)

1−c1
,

m̃G(K) can be rewritten as

m̃G(K) =
∫ ∞

δ−1
1

Gβ1,c1(dx)
∏

j∈K[vj + x] , K ⊂ {1, . . . , J } \ ∅,

where

Gβ1,c1(x) = G
[
β1 + ln

{
(1 − c1)x − 1

}]
. (4.10)

Note that the support of the random variable X is ((1 − c1)
−1,∞). Consider the following four

conditions:

H1. For all m,n ∈ N, θ1:n,β1:m and c1:m are mutually independent conditionally on (G,H,K).
H2. The item parameters β1:∞ are generated by an iid process, where H is the common proba-

bility distribution.
H3. The item parameters c1:∞ are generated by an iid process, where K is the common proba-

bility distribution.
H4. G, H and K are mutually independent.

The Bayesian model is now defined on (Y 1,β1:∞, c1:∞,G), where Y 1 ∈ {0,1}N. Under these
conditions, it can be proved that

∫

R+
f (x)Gβ1,c1(dx) (4.11)

is b-identified by Y 1, for every bounded continuous function f : R
+ −→ R, where Gβ1,c1 is

defined by (4.10); that is, it is measurable with respect to σ {E[h(Y 1) | β1:∞, c1:∞,G] : h ∈
L1({0,1}N, Y ,Π)}. In particular, since

fn(y) = 1(0,x](y) + [
1 − n(y − x)

]
1

(x,x+ 1
n
)
(y) ↓ 1(0,x](y) ∀x ∈ R

+,

as n → ∞, the monotone convergence theorem implies that, for every x ∈ R
+, Gβ1,c1((0, x]),

and so Gβ1,c1 , is identified by one observation.
It is interesting to remark how strong is the identification relationship (4.11) when it is com-

pared with the identified functionals m̃G(K): the first one is a condition valid for every function
f ∈ Cb(R

+), where Cb(R
+) denotes the set of bounded continuous functions f : R

+ −→ R,
whereas the second condition is valid for the set

{∏

j∈K
[vj + x]−1 : K ⊂ {1, . . . , J } \ ∅, J ≥ 3

}
� Cb

(
(1 − c1)

−1,∞)
� Cb

(
R

+)
.

The following theorem, proved in Appendix C, establishes conditions under which the
item parameters and the latent distribution G are identified in the asymptotic Bayesian model
(Y 1,β1:∞, c1:∞,G):
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Theorem 5. Consider an asymptotic Bayesian semi-parametric 1PL-G model obtained when the
number of items J → ∞. The item parameters (β1:∞, c1:∞) and the latent distribution generat-
ing the person specific abilities G are b-identified by Y 1 if the following two conditions hold:

1. The difficulty parameter β1:∞ and the guessing parameters c1:∞ satisfy conditions H1–
H4.

2. At least one of the following identifying restrictions hold:
(a) β1 = 0 a.s. and c1 = 0 a.s.
(b) G is a.s. a probability distribution on R such that its mean and variance are known

constants.
(c) G is a.s. a probability distribution on R with two known q-quantiles.

This theorem deserves the following comments:

1. Theorem 5 establishes the identification of the parameters of interest after fixing specific
properties of the distribution G, for instance, its mean and variance. By so doing, β1 and
c1 are identified. Contrary to Theorem 3, it is possible, when an infinite quantity of items
is available, to identify Gβ1,c1 , and not only a “part” of it and, therefore, to choose which
functionals can be restricted. For details, see Appendix C, STEP 4.

2. The proof of Theorem 5 is similar to the identification analysis of a semi-parametric
Rasch model; see San Martín et al. (2011, Theorem 6). In fact, the structure of the proofs
is the following:
(a) First, the identified parameterization is made explicit. In both cases, the identified

parametrization involves some parameters of interest: in the Rasch model case, it de-
pends on one difficulty parameter; in the 1PL-G model case, it depends on both one
difficulty parameter and one guessing parameter.

(b) Second, the problem reduces to identifying a mixing distribution (in the Rasch model
case, the mixing distribution is Gβ1 , where β1 corresponds to a difficulty parameter; in
the 1PL-G case, the mixing distribution is Gβ1,c1 ). Because of the binary support of the
conditional distribution (in both cases, it is a Bernoulli distribution), the identification
problem is solved asymptotically.

5. How Relevant is Identification in a Bayesian Approach?

The identification results established in Sections 2, 3, and 4, share a common identification
restriction: the guessing parameter of the standard item should be fixed at 0. As it was dis-
cussed previously, this identification result imposes a design restriction on the multiple-choice
test, namely to ensure that the test includes an item that no person will correctly answer by guess-
ing. In practice, this means that not any kind of educational data can be analyzed with the 1PL-G
model, but only those data which were generated by a measurement instrument satisfying the
previous design.

Instead of limiting the applicability of the 1PL-G model to specific data sets, it could be
argued that a Bayesian approach circumvents such a limitation since “unidentifiability causes no
real difficulty in the Bayesian approach” (Lindley, 1971). However, when a model formalizes a
certain phenomenon (in our case, the guessing behavior in multiple-choice tests), the identifica-
tion problem is more than a simple technical assumption, but covers a more fundamental aspect,
namely the adequacy of a theoretical statistical model for an observed process. Consequently, it
is seems relevant to make clear the status of identification in a Bayesian framework.
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5.1. Identified Parameter and Updating Process

Lindley’s statement is based on the fact that, under specific technical conditions (Mouchart,
1976; Florens et al., 1990, Chapter 1), it is possible to compute the posterior distribution of an
unidentified parameter. By so doing, the unidentified parameter is revised by the observation and,
therefore, has an empirical meaning. It is then concluded that “nonidentifiability does not assert
that there is no Bayesian learning” (Gelgand & Sahu, 1999, p. 248). However, taking into account
that a statistical model always includes an identified parameter, it can be shown that the posterior
distribution of an unidentified parameter updates the identified parameter only, and consequently,
does not provides any empirical information on the unidentified parameter.

As a matter of fact, let us consider, as in Section 4.3.1, a Bayesian model defined on (Y ,ϑ),
where Y corresponds to the observations and ϑ to the parameters. In the context of this Bayesian
model, a sub-parameter ζ is a measurable function of ϑ ; we denote it as ζ ⊂ ϑ . Let ϑmin ⊂ ϑ

be the identified parameter and suppose that we are interested in revising an unidentified param-
eter ζ ⊂ ϑ . This leads to computing the posterior expectation E[h(ζ ) | Y ] for all measurable
integrable function h.

What do we learn about ζ from the data? By definition of ϑmin, we have that Y⊥⊥ϑ | ϑmin.
Since ζ ⊂ ϑ , it follows that

Y⊥⊥ζ | ϑmin. (5.1)

Using the standard properties of conditional expectation (Rao, 2005, Chapter 2), we obtain that,
for all measurable integrable function h,

E
[
h(ζ ) | Y ] = E

{
E

[
h(ζ ) | Y ,ϑmin

] | Y}

= E
{
E

[
h(ζ ) | ϑmin

] | Y}
by (5.1)

.= E
[
g(ϑmin) | Y ]

.

That is, what we learn about the unidentified parameter ζ reduces to what we learn about a
function of the identified parameter ϑmin. In other words, the data Y provides information on
the identified parameter ϑmin only, not on the unidentified parameter ζ : outside of the identified
parameter ϑmin, there is nothing to learn.

The intuition behind this formal fact is the following: A parameter is Bayesian identified
if and only if it is a measurable function of countably many sampling expectations of statistics.
That is, the identified parameter captures all the information contained in the sampling process.
This explains why an identification analysis needs to make explicit at the beginning the sampling
distributions or likelihood.

Example 1. Let us illustrate the previous considerations with the following simple hierarchical
model (taken from Poirier, 1998, Section 3.2): let (Y | ψ,λ) ∼ N (ψ,σ 2

1 ) be the likelihood or
sampling distribution, and let

(
ψ

λ

)
∼ N2

((
0

0

)
,

(
σ 2

2 + 1 1
1 1

))

be the prior specification. For simplicity, it is assumed that σ 2
1 and σ 2

2 are known constants.
Since ψ = E(Y | ψ,λ), it is concluded that ψ is b-identified by Y , whereas λ is unidentified.
The posterior distribution of λ can be computed and it is actually given by

(λ | Y) ∼ N
(

Y

σ 2
1 + σ 2

2 + 1
,

σ 2
1 + σ 2

2

σ 2
1 + σ 2

2 + 1

)
.
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This distribution provides information about λ. However, it is a function of the posterior distri-
bution of the identified parameter ψ . In fact, it is enough to note that

E[λ | Y ] = 1

σ 2
2 + 1

E[ψ | Y ], V (λ | Y) = 1

σ 2
2 + 1

[
1

σ 2
2 + 1

V (ψ | Y) + σ 2
2

]
.

Therefore, the identified parameter fully characterizes the learning-by-observing process. More-
over, the statistical interpretation of the unidentified parameter rests on the statistical meaning of
the identified one since the sampling process is fully characterized by the identified parameter.

Now, it is possible to marginalize with respect to ψ and to declare that the sampling pro-
cess is now described by the sampling distribution (Y | λ) ∼ N (λ,σ 2

1 + σ 2
2 ), where the prior

distribution is given by λ ∼ N (0,1). In this case, λ is b-identified by Y since λ = E(Y | λ) and,
therefore, fully characterizes the sampling process.

What is the sampling process we want to revise? This question should be solved by the
modeler; once a sampling process is specified, the task, previous to any estimation procedure, is
to know the adequacy of the theoretical statistical model for an observed process.

Taking into account these considerations, let us come back to the identification results es-
tablished in the previous sections. Four different sampling processes have been made explicit
and depending on substantive aspects, one of them should be chosen. For instance, if the per-
son specific abilities are considered as parameters indexing the likelihood, along with the item
parameters, then a fixed-effects 1PL-G model may be chosen. According to Theorem 1, under
the restrictions β1 = 0 and c1 = 0, the identified parameters are (β2:J , c2:J , θ1:N). If the esti-
mation procedure will be done using a Bayesian approach, the prior distributions defined on
(β1:J , c1:J , θ1:N) should be specified in such a way that β1 = 0 a.s. and c1 = 0 a.s. The identified
parameters fully characterize the learning-by-observing process.

Suppose now that the interest focuses on the distribution generating the person specific abil-
ities. In a realistic scenario, that is, when a finite number of items is available, the sampling
process is parametrized by (β1:J , c1:J ,G); and, therefore, a semi-parametric 1PL-G model is
considered. According to Theorems 3 and 4, if β1 and c1 are fixed at 0, then (β2:J , c2:J ,mG) is
b-identified by Y 1. Thus, what we learn about G from the data corresponds to the updating of
mG only. Therefore, it is not a matter of the non-parametric Bayesian procedure which is used to
estimate G, the issue is that such an estimation always corresponds to mG, not to G.

5.2. Identification, Consistency and the Gibbs Sampler

The statistical model induced either by a random-effects 1PL-G model or by its semi-
parametric version, corresponds to an iid process given the parameters of interest. In this con-
text, the b-identified parameter is consistently estimated by the corresponding posterior expecta-
tion given Y 1:N ; for a proof, see Florens et al. (1990, Theorem 9.3.12). More precisely, for the
random-effects 1PL-G model, (β1:J , c2:J , σ ) is the b-identified parameter; then the following
consistency result holds: for any measurable integrable function f ,

lim
N→∞E

[
f (β1:J , c2:J , σ ) | Y 1:N

] = f (β1:J , c2:J , σ ) a.s.

In particular, the difficulty parameters β1:J , the guessing parameters c2:J and the scale parameter
σ are consistently estimated by their posterior distributions. Similarly, for the semi-parametric
1PL-G model (with a finite quantity of items), β2:J , c2:J and mG are consistently estimated
by their respective posterior expectations. Finally, for the semi-parametric 1PL-G model, the
distribution G is consistently estimated by its posterior expectation if both the number of items
and the number of persons go to infinite. Let us mention that, for all prior distribution defined on
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the identified parameters, these results of consistency are necessary conditions for ensuring the
consistency (both strong and weak) in a pure sampling theory framework; for general details, see
Florens et al. (1990, Theorems 7.4.6 and 7.4.7).

In spite of the previous facts, the Bayesian literature has discussed the identification prob-
lem in relation to simulation-based techniques typically used for model fitting and inferences.
It is commonly argued that nonidentifiability does not preclude Bayesian inference as long as a
suitable informative prior is specified. Kass, Carlin, Gelman, and Neal (1998) pointed out that,
provided the posterior is proper, there is no problem for MCMC methods, assuming that one has
determined that the nonidentifiability “is not due to a bug”. This type of consideration has been
widely illustrated through the following example:

Example 2. Suppose that the data generating process is characterized by the sampling distribu-
tion

(Y | ψ,λ)
iid∼ N

(
ψ + λ,σ 2

Y

)
,

where σ 2
Y is known. It is also assumed that (ψ,λ) are the parameters of interest and, therefore,

their prior distributions are specified as follows:

(
ψ | μψ,σ 2

ψ

) ∼ N
(
μψ,σ 2

ψ

)
,

(
λ | μλ,σ

2
λ

) ∼ N
(
μλ,σ

2
λ

)
, ψ⊥⊥λ | μψ,μλ,σ

2
ψ,σ 2

λ ,

where μψ,μλ,σ
2
ψ,σ 2

λ are known constants. It is clear that ψ + λ is the identified parameter,
whereas ψ and λ are unidentified. Since these parameters are of interest, they are estimated
through their posterior distribution. However, as in Example 1, these posterior distributions are
functions of the posterior distribution of the identified parameter since

E[ψ | Y ] = ηψ,λ + σ 2
ψ

σ 2
λ + σ 2

ψ

E[ψ + λ | Y ],

where ηψ,λ
.= σ 2

λ

σ 2
λ +σ 2

ψ

μψ − σ 2
ψ

σ 2
λ +σ 2

ψ

μλ; and similarly for E[λ | Y ]. In spite of this, it is said that if

the prior distributions are not enough informative, the Gibbs sampler procedure, which is used to
estimate the unidentified parameters, will show poor behavior; see Kass et al. (1998), Carlin and
Louis (2000), Eberly and Carlin (2000), and Xie and Carlin (2006).

This type of statement is based on simulations such as the following. Using R (R Develop-
ment Core Team, 2006), we simulated a sample of size 200 for a normal distribution with pa-
rameters ψ = 5 and λ = 2. We fit the model for three different prior specifications for ψ and λ:
Model 1: N (0,1); Model 2: N (0,5); Model 3: N (0,10); Model 4: N (0,100). For the Gibbs
sampler procedure of all models, we generate 100,000 samples, discarding the initial 50,000 as
the burn-in period and using a lag of 50 iterations to avoid correlation, for three different Markov
chains, using different starting values for each chain. We report the posterior means, standard
deviations and 95 % probability intervals in Table 1. In Figure 1, we show the running means of
the unidentified parameter ψ , whereas in Figure 2 we show the Markov chain traces for ψ .

From Table 1 and Figures 1 and 2, it can be concluded that the Markov chain for the pa-
rameter ψ converges only for Model 1, whereas for the other three models the convergence is
getting worse as the variances σ 2

ψ and σ 2
λ increase. However, the Markov chain for the identified

parameter ψ + λ converges for the four models. This type of behavior leads to stating that if
the prior distribution of the unidentified parameter is informative (Model 1), the Gibbs sampler
procedure shows good behavior; and, therefore, an estimation of the unidentified parameter is
obtained.
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TABLE 1.
Bayesian estimates summaries for the simulated normal dataset.

Model 1 Model 2 Model 3 Model 4
ψ ψ + λ ψ ψ + λ ψ ψ + λ ψ ψ + λ

Mean 3.3 7.1 3.0 7.1 1.5 7.1 44.3 7.1
SD 0.7 0.1 2.3 0.1 9.3 0.1 34.7 0.1
P2.5 1.9 6.9 −1.5 6.9 −16.3 6.9 −1.7 6.9
P97.5 4.7 7.2 7.2 7.2 18.4 7.2 124.6 7.2

FIGURE 1.
Running means of parameter ψ : Model 1 (upper left corner), Model 2 (upper right corner), Model 3 (lower left corner),
and Model 4 (lower right corner).

This type of conclusions should be complemented by standard convergence diagnostics. In
applications, three convergence diagnostics are used: the Gelman and Rubin statistic (Gelman
& Rubin, 1992); the Geweke test (Geweke, 1992); and the Heidelberg and Welch stationary test
(Heidelberg & Welch, 1992). Tables 2 and 3 show the results of the convergence diagnostics for
the Markov chains of the parameter ψ and ψ +λ, respectively. It can be concluded that for Model
1, the Markov chain for the unidentified parameter ψ converges according to these three criteria.
However, it is important to stress that as the variances σ 2

ψ and σ 2
λ increase, the convergence of

the Markov chain for the parameter ψ is poor, whereas the Markov chain of the parameter ψ +λ

always has good behavior.
The conclusion seems to be the following: if prior distributions of unidentified parameters

are concentrated around their true value, the Gibbs sampler procedure has good behavior. How-
ever, if those prior distributions become non-informative or diffuse (which happens when the
variances σ 2

ψ and σ 2
λ are large), the Gibbs sampler procedure becomes worse.
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FIGURE 2.
Markov chain of parameter ψ : Model 1 (upper left corner), Model 2 (upper right corner), Model 3 (lower left corner),
and Model 4 (lower right corner).

TABLE 2.
Convergence diagnostics for parameter ψ .

Convergence diagnostic Model 1 Model 2 Model 3 Model 4

Gelman–Rubin (value of statistic) 1.00 1.00 2.9 3.7
Geweke (converging chains/total chains) 3/3 0/3 0/3 0/3
Heidelberg–Welch (converging chains/total chains) 3/3 0/3 0/3 0/3

TABLE 3.
Convergence diagnostics for parameter ψ + λ.

Convergence diagnostic Model 1 Model 2 Model 3 Model 4

Gelman–Rubin (value of statistic) 1.00 1.00 1.00 1.00
Geweke (converging chains/total chains) 3/3 3/3 3/3 3/3
Heidelberg–Welch (converging chains/total chains) 3/3 3/3 3/3 3/3

The erratic behavior of the Markov chain is not related with the unidentifiability of the
parameter ψ , but with its ergodicity. More precisely, let (Ω, F ,P ) be a probability space and let
X and Y be two real random variables defined on (Ω, F ). In order to define a two-component
Gibbs sampler, we define a joint probability Π as Π(dx,dy)

.= P [X ∈ dx,Y ∈ dy]. It is assumed
that Π can be decomposed as follows:

Π(dx,dy) = μ(dx)νx(dy) = ν(dy)μy(dx),
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where ν•(•) : R× B −→ [0,1] and μ•(•) : R× B −→ [0,1] are regular conditional probabilities,
whereas μ(dx) = P [X ∈ dx] and ν(dy) = P [Y ∈ dy] are marginal probabilities. As is well
known, a two-component Gibbs sampling algorithm is defined as follows:

1. A real random variable X0 is generated from μ0: X0 ∼ μ0.
2. Given X0, a real random variable Y0 is generated as follows: (Y0 | X0) ∼ νX0 .
3. Given (X0:n,Y 0:n), a real random variable Xn+1 is generated as follows: (Xn | X0:n,

Y 0:n) ∼ μYn for all n ∈ N; and given (X0:n+1,Y 0:n), a real random variable Yn+1 is
generated as follows: (Yn+1 | X0:n+1,Y 0:n) ∼ νXn+1 for all n ∈ N.

Here X0:n = (X0,X1, . . . ,Xn) and similarly for Y 0:n. The following two properties are known:
let Zn = (Xn,Yn) and Z

.= {Zn : n ∈ N}. Then

1. Z is a homogeneous Markov process P μ0 .
2. If μ0 = μ, then Z is a stationary Markov process P μ.

In this context, it can be shown that the invariant σ -field, denoted as ZI , can be characterized
by the following intersection of σ -fields: ZI = X 0 ∩ Y 0, where X 0 corresponds to the σ -field
generated by X0 and completed by measurable sets of probability 0 or 1; similarly, for Y 0.
Therefore, Z is an ergodic stationary Markov process if and only if

X 0 ∩ Y 0 = {
A ∈ F : P(A)2 = P(A)

}
. (5.2)

Note that the σ -field at the right-hand side of (5.2) corresponds to the completed trivial σ -field.
For details and proofs, see Florens et al. (1990, Theorem 9.3.24) and Berti, Pratelli, and Riggo
(2008, 2010). This characterization can be extended to a k-component Gibbs sampler, but this is
outside of the scope of this paper.

Let us comment on the equality (5.2). When the equality (5.2) holds, it is said that X0 and Y0
are measurably separated (Florens et al., 1990, Chapter 5). Taking into account that the σ -field
generated by a random variable corresponds to the sets of events that may be described in terms
of that random variable (Florens & Mouchart, 1982; San Martín, Mouchart, & Rolin, 2005),
the completed trivial σ -field at the right-hand of (5.2) corresponds to the almost-sure trivial
information. Therefore, (5.2) can heuristically be interpreted as saying that X0 and Y0 don’t
share common information. This concept is related to Basu’s first theorem and to non-common
information in graphical models; for details, see San Martín et al. (2005).

In the context of Example 2, the ergodicity of the Markov chain induced by the two-
component Gibbs sampler corresponds to the measurable separability of the first two states of
the chain θ0 = (ψ0, λ0) and θ1 = (ψ1, λ1) conditionally on Y . Using San Martín et al. (2005,
Theorem 4.1), this condition is equivalent to the following condition:

r
[
Var(θ1 | Y)

] = r
[
Var(θ1 | θ0, Y )

]
, (5.3)

where r(A) denotes the rank of matrix A. Assuming that σY = 1, it can be verified that

Var(θ1 | Y) = 1

(σ 2
ψ + σ 2

λ + 1)

(
σ 2

ψ(σ 2
λ + 1) −σ 2

λ σ 2
ψ

−σ 2
λ σ 2

ψ σ 2
λ (σ 2

ψ + 1)

)

and

Var(θ1 | θ0, Y ) =
⎛

⎜
⎝

σ 2
ψ

σ 2
ψ+1

−σ 2
λ σ 2

ψ

(σ 2
ψ+1)(σ 2

λ +1)

−σ 2
λ σ 2

ψ

(σ 2
ψ+1)(σ 2

λ +1)

σ 2
λ

σ 2
λ +1

[1 + σ 2
ψσ 2

λ

(σ 2
ψ+1)(σ 2

λ +1)
]

⎞

⎟
⎠ .
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FIGURE 3.
Arccosine of the angle formed by the columns of matrix Var(θ1 | Y ) (continuous line) and Var(θ1 | θ0, Y ) (dash line).

It is straightforward to verify that these two matrices are of rank 2 and, therefore, (5.3)
is verified. In other words, the Markov chain induced by the two-component Gibbs sampler is
theoretically ergodic; and, consequently, no convergence problem exists. Nevertheless, this fact
is actually contrary to the conclusions based on the convergence diagnostics. The problem arises
when σ 2

ψ and σ 2
λ go to infinity. In this case, we have that

Var(θ1 | Y) −→
(

1 −1
−1 1

)
and Var(θ1 | θ0, Y ) −→

(
1 −1

−1 2

)
.

This means that as the variances σ 2
ψ and σ 2

λ increase, the rank of matrix Var(θ1 | Y) numerically
approaches 1, whereas the rank of Var(θ1 | θ0, Y ) is always equal to 2. A graphical view of this
empirical fact is provided in Figure 3, where we plot a common value for the variances σ 2

ψ and

σ 2
λ against the arccosine of the angle formed by the columns of Var(θ1 | Y) and Var(θ1 | θ0, Y ).

It can be appreciated that as the variances grow, the angle formed by the columns of Var(θ1 | Y)

becomes increasingly closer to 180° (or π radians), which means that both columns are “al-
most” linearly dependent. However, as the variances grow, the angle formed by the columns of
Var(θ1 | θ0, Y ) becomes increasingly closer to 161.5° (or ≈ 9π/10 radians), which means that
both columns are always linearly independent. Therefore, the erratic behavior of the Gibbs sam-
pler is due to the fact that the ergodicity of the Markov chain of Example 2 empirically seems to
fail, although theoretically it is always ergodic. This suggests that is necessary to generate more
samples in order to observe the convergence.

The measurable separability of the first two states of the Markov chain induced by the Gibbs
sampler is a necessary and sufficient condition for the a.s. convergence of the chain. Therefore,
the behavior of the Gibbs sampler does not depend on the (un)identification of parameters, but
only on the information common to the first two states of the corresponding Markov chain.
Identification ensures that the results obtained by the Gibbs sampler correspond to the estimation
of the identified parameter. Moreover, if an unidentified parameter is estimated through a Gibbs
sampler procedure, its results must be interpreted as an estimation of the identified parameters.
Let us finish this section mentioning that in future works we plan to address the problem of
characterizing condition (5.2) for semi-parametric IRT models.

6. Discussion

We have studied the identification problem of a particular case of the 3PL model, namely the
1PL-G model which assumes that the discrimination parameters are all equal to 1. The identifi-
cation problem was studied under three different specifications. The first specification assumes
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that the individual abilities are unknown parameters. The second specification considers the abil-
ities as mutually independent random variables with a common distribution known up to the
scale parameter. In this context, the case was also considered where the distribution generating
the individual abilities is known up to the scale parameter and the location parameter. The third
specification corresponds to a semi-parametric 1PL-G model, where the distribution generating
the individual abilities is unspecified and, consequently, considered as a parameter of interest.

6.1. Summary of the Main Results

For the first specification, the parameters of interest are the difficulty parameters, the guess-
ing parameters and the individual abilities. These are identified provided a difficulty parameter
and a guessing parameter are fixed at zero. For the second specification, the parameters of inter-
est are the difficulty and guessing parameters, and the scale parameter. It was shown that these
parameters are identified by one observation if a guessing parameter is fixed at zero. Also studied
was the identification problem when the distribution generating the individual abilities is known
up to both the scale and the location parameters. In this context, the parameters of interest are
identified if a guessing parameter and a difficulty parameter are fixed at 0. As a sub-product of
the previous arguments, the parameters of interest of a random-effects 2PL model are identified
provided a discrimination parameter is fixed at 1.

For the third specification, the parameters of interest are the difficulty parameters, the guess-
ing parameters and the distribution G generating the individual abilities. When at least three
items are available, the item parameters are identified provided a difficulty parameter and a guess-
ing parameter are fixed at 0. However, under these identification restrictions, it was proved that
the distribution G is not identified. This lack of identification jeopardizes the empirical meaning
of an estimate for G under a finite number of items. In the unrealistic case when an infinite quan-
tity of items is available, the distribution G and the item parameters become identified if either
a difficulty and guessing parameters are fixed at zero, or two characteristics of G (the first two
moments, or two quantiles) are fixed. For an overview of these results, see Table 4.

It should be remarked that the proofs of these identification results consisted in obtaining
the corresponding identified parameterizations of the sampling process. Thereafter, identification
restrictions were imposed in such a way that the parameters of interest become identified. This
means that the identification restrictions are not only sufficient conditions, but also necessary.
On the other hand, these results show that the identification of the fixed-effects 1PL-G model
does not imply the identification of the random-effects 1PL-G model and, by extension, of the
semi-parametric 1PL-G model.

6.2. Practical Consequences of the Main Results

Among the practical consequences of the previous identification results, we remark the fol-
lowing:

1. The identification results established in Sections 2, 3, and 4, share a common identi-
fication restriction (except Corollary 1, second statement): the guessing parameter of
the standard item should be fixed at 0. This result imposes a design restriction on the
multiple-choice test, namely to ensure that the test includes an item that no person will
correctly answer by guessing. In practice, this means that not any kind of educational
data can be analyzed with the 1PL-G model, but only those data which were generated
by a multiple-choice test satisfying the previous design. The investigation of guessing
behavior in multiple-choice tests requires, therefore, the comprehension of what it means
to answer correctly an item without guessing. This is a theoretical challenge that should
be satisfied if the 1PL-G model (as well as other IRT models with a guessing parameter)
wants to be fitted.
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2. For the random-effects 1PL-G model, the identification analysis implies that the guess-
ing parameters are bounded by the marginal probability of answering an item correctly;
see inequality (3.15). Taking into account that the identification analysis is done un-
der the assumption that the specific statistical model is the true model, in practice this
condition could be useful for evaluating the adequacy of the 1PL-G model for the
data under analysis. In fact, first, cj should be approximated by (3.16) for each item
k 
= 1, j ; secondly, if there exists an item (other than the standard item 1) j such that
P [Yij = 1 | β1:J , c1:J , σ ] < cj , for one item k 
= 1, j , then we have some empirical ev-
idence to reject the use of this model. In any case, empirical investigations need to be
performed to take practical advantages of these relationships.

3. Inequality (3.15) can also be used to evaluate if the practical rules of fixing an overall
guessing parameter at L−1, with L being the number of response categories, is empir-
ically adequate. In other words, this inequality is useful for interpreting the guessing
behavior with respect to L−1 in the sense that people guess considering all the alterna-
tives or some of them. In the last case, it could be suggested that the guessing behavior is
ability-based.

4. In applications, it is well known that the 3PL has estimation problems, specially for the
guessing parameters. Some software prevent against this type of problems; see, for in-
stance, Rizopoulos (2006). Taking into account that the 1PL-G model is a particular case
of the 3PL model, our results explain that a source of such problems is due to the lack
of parameter identification. Therefore, if specialized packages are used to fit the 1PL-G
model, the identification restrictions established in this paper should be considered in
order to ensure a coherent inference.

5. In the semi-parametric case, when a finite number of items is available (which is always
the case), it was established that the distribution G generating the person specific abilities
is not identified. This lack of identification jeopardizes the empirical meaning of an esti-
mate for G under a finite number of items. This result is of practical relevance, especially
considering the large amount of research trying to relax the parametric assumption of G

in the IRT literature.

Let us finish this paper by pointing out two open problems we consider of relevance. First,
the identification of the random-effects 1PL-G model depends on the logistic function used in
its specification, although part of the identification analysis was developed for general link func-
tions F . Is it possible to extend the identification analysis for arbitrary link functions F ? Second,
the identification analysis exploited in this paper could be useful for investigating the identifica-
tion of both the fixed-effects and the random-effects 3PL model. In this paper, not only was the
identification of the random-effects 1PL-G model established, but also the identification of the
random-effects 2PL model. Taking into account that these models are related to the 3PL, it seems
reasonable to expect that the identification of the 3PL model is based on them. However, this is
still an open problem.
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Appendix A. Identifiability of the Scale Parameter σ by ω12, δ1, δ2,ω1, and ω2

To prove that the function ω12 given by (3.11) is a strictly increasing continuous function of
σ , we need to study the sign of its derivative with respect to σ . This requires not only using the
Implicit Function Theorem (Spivak, 1965), but also assuming regularity conditions that allow
performing derivatives under the integral sign. We accordingly assume that the cumulative dis-
tribution function F has a continuous density function f strictly positive on R. Furthermore, to
prove that ω12 is a strictly increasing continuous function of σ , we need to obtain the derivatives
under the integral sign of the function p(σ,β) as defined in (3.7) with respect to σ and to β .
Consequently, it is assumed that, ∀σ ∈ R

+
0 and ∀β ∈ R, there exist ε > 0 and η > 0, such that

∫

R

sup
|σ ′−σ |≤ε

sup
|β ′−β|≤η

f
(
σ ′x − β ′)G(dx) < ∞,

∫

R

|x| sup
|σ ′−σ |≤ε

sup
|β ′−β|≤η

f
(
ϕ′x − β ′)G(dx) < ∞.

Under these regularity conditions, the function p(σ,β) is continuously differentiable under the
integral on R

+
0 × R and, therefore,

(i) D2p(σ,β)
.= ∂

∂β
p(σ,β) =

∫

R

f (σx − β)G(dx)

(ii) D1p(σ,β)
.= ∂

∂σ
p(σ,β) = −

∫

R

xf (σx − β)G(dx).

(A.1)

Thus, p(σ,α) as defined by (3.9) is also continuously differentiable on R
+
0 × (0,1); and from

(3.10), we obtain that

(i) 1 = ∂

∂β
p
[
σ,p(σ,β)

]

= D2p
[
σ,p(σ,β)

] × D2p(σ,β)

(ii) 0 = ∂

∂σ
p
[
σ,p(σ,β)

]

= D1p
[
σ,p(σ,β)

] + D2p
[
σ,p(σ,β)

] × D1p(σ,β),

(A.2)

where

D1p(σ,ω)
.= ∂

∂σ
p(σ,ω), D2p(σ,ω)

.= ∂

∂ω
p(σ,ω).

Combining (A.1) and (A.2), we obtain that

(i) D2p(σ,ω) = 1

D2p[σ,p(σ,ω)] = 1
∫

R
f [σx − p(σ,ω)]G(dx)

(ii) D1p(σ,ω) = −D1p[σ,p(σ,ω)]
D2p[σ,p(σ,ω)] =

∫
R

xf [σx − p(σ,ω)]G(dx)
∫

R
f [σx − p(σ,ω)]G(dx)

.= Eσ,ω(X),

(A.3)
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where

Pσ,ω[X ∈ dx] .= Gσ,ω(dx)
.= f [σx − p(σ,ω)]G(dx)

∫
R

f [σx − p(σ,ω)]G(dx)
.

Thanks to the regularity conditions allowing to perform derivatives of p(σ,β), and to the
fact that F ≤ 1, it can be shown that ω12 is continuously differentiable under the integral sign in
σ , β1 and β2; therefore, the function ϕ(σ, δ1, δ2,ω1,ω2) is continuously differentiable under the
integral sign with respect to σ . It remains to show that the derivative w.r.t. σ is strictly positive.
Let us consider the sign of one of the two terms of the derivative of ϕ(σ, δ1, δ2,ω1,ω2). Using
(A.3.ii), we obtain that

∂

∂σ

{
1 − F

[
σx − p(σ,ω1/δ1)

]} = −f
[
σx − p(σ,ω1/δ1)

](
x − Eσ,ω1/δ1(X)

)
.

Therefore, such a second term can be written as

δ1δ2

∫

R

−f

[
σθ − p

(
σ,

ω1

δ1

)]{
θ − Eσ,ω1/δ1(θ)

} ×
{

1 − F

[
σθ − p

(
σ,

ω2

δ2

)]}
G(dθ)

= δ1δ2

∫

R

f

[
σθ − p

(
σ,

ω1

δ1

)]
G(dθ) × Cσ,ω1/δ1

{
θ,F

[
σθ − p

(
σ,

ω2

δ2

)]}
.

Now, since F [σθ − p(σ,ω2/δ2)] is a strictly increasing function of θ , the covariance between θ

and F [σθ − p(σ,ω2/δ2)] (with respect to Gσ,ω1/δ1 ) is strictly positive (if θ is not degenerate).
Furthermore,

∫

R

f
[
σx − p(σ,ω1/δ1)

]
G(dx)

is clearly strictly positive. The two terms of the derivative of ϕ(σ, δ1, δ2,ω1,ω2) are, therefore,
strictly positive. �

Appendix B. Identification of the Random-Effects 2PL Model

Random-effects 2PL-type models are specified under the same hypotheses of the random-
effects 1PL-G model (see Section 3.1), but the conditional distribution of Yij given the person
specific ability θi is given by

P [Yij = 1 | θi, αj , βj ] = F(αj θi − βj ), (B.1)

where F is a strictly increasing distribution function with a continuous density function f strictly
positive on R. Let us suppose that the person specific abilities are distributed according to a
known distribution G.

B.1. Identification of the Difficulty Parameters

Let

γj
.=

∫

R

F(αj θ − βj )G(dθ)
.= p(αj ,βj ),

which is a continuous function strictly decreasing in βj . Define

p(α,γ ) = inf
{
β : p(α,β) < γ

}
.

Since p[α,p(,α,β)] = β , it follows that βj = p[αj , γj ] for each j = 1, . . . , J . Thus, the item
parameter βj becomes identified once the discrimination parameter αj becomes identified.
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B.2. Monotonicity of P [Yij = 1, Yik = 1 | α1:J ,β1:J ]
In order to identify the discrimination parameters, we need to study the monotonicity of

P [Yij = 1, Yik = 1 | α1:J ,β1:J ] as a function of the discrimination parameters. Using the equality
p[α,p(α,β)] = β , it follows that

∂

∂ζ
p
[
α,p(α,β)

] = − 1
∫

R
f (αθ − β)G(dθ)

;

∂

∂α
p
[
α,p(α,β)

] =
∫

R
θf (αθ − β)G(dθ)

∫
R

f (αθ − β)G(dθ)

.= Eα,β [X],

where

Pα,β [X ∈ dθ ] .= Gα,β(dθ) = f (αθ − β)
∫

R
f (αθ − β)G(dθ)

.

Thus,

∂

∂α
F

[
αθ − p(α,γ )

] =
{
θ − ∂

∂α
p(α,γ )

}
f

[
αθ − p(α,γ )

]
, (B.2)

where ∂
∂α

p[α,γ ] = Eα,p[α,γ ][X].
Let

γjk = P [Yij = 1, Yik = 1 | α1:J ,β1:J ]

=
∫

R

F [αj θ − βj ]F [αkθ − βk]G(dθ)
.= g(αj ,βj ,αk,βk)

=
∫

R

F
[
αjθ − p(αj , γj )

]
F

[
αkθ − p(αk, γk)

]
G(dθ)

.= h(αj , γj ,αk, γk). (B.3)

Using (B.2), it follows that

∂

∂αj

h(αj , γj ,αk, γk)

=
∫

R

f
[
αj θ − p(αj , γj )

]
G(dθ) × Cαj ,p(αj ,γj )

{
X,F

[
αkX − p(αk, γk)

]}
> 0 (B.4)

provided αk > 0 since in this case F [αkX − p(αk, γk)] is a strictly increasing function of X and,
consequently, the covariance between X and F [αkX − p(αk, γk)] is positive (if X is not degen-
erate). Thus, h(αj , γj ,αk, γk) is a strictly increasing function in αj . Similarly, it is concluded
that h(αj , γj ,αk, γk) is also a strictly increasing function in αk provided αj > 0. The inverse
function of h can, therefore, be defined as

h(αj , γj , ζ, γk) = inf
{
α′

k : h(
αj , γj ,α

′
k, γk

)
> ζ

}

and consequently,

(i) h
[
αj , γj , h(αj , γj ,αk, γk), γk

] = αk;
(ii) h

[
αj , γj , h(αj , γj , ζk, γk), γk

] = ζ.
(B.5)
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B.3. Identification of the Discrimination Parameters

Let J ≥ 3. Using (B.3), we have that

γ12 = h(α1, γ1, α2, γ2), γ13 = h(α1, γ1, α3, γ3), γ23 = h(α2, γ2, α3, γ3).

Therefore, by (B.5.i) it follows that α2 = h(α1, γ1, γ12, γ2) and α3 = h(α1, γ1, γ13, γ3). Thus,

γ23 = h
[
h(α1, γ1, γ12, γ2), γ2, h(α1, γ1, γ13, γ3), γ3

]

.= k(α1, γ1, γ2, γ3, γ12, γ13).

The identification of α1 follows because the function k is invertible. As a matter of fact,

∂

∂α1
k(α1, γ1, γ2, γ3, γ12, γ13)

= ∂h

∂α1

[
h(α1, γ1, γ12, γ2), γ2, h(α1, γ1, γ13, γ3), γ3

] × ∂h

∂α1
[α1, γ1, γ12, γ2]

+ ∂h

∂α2

[
h(α1, γ1, γ12, γ2), γ2, h(α1, γ1, γ13, γ3), γ3

] × ∂h

∂α1
[α1, γ1, γ12, γ2].

But

∂h

∂α1
[α1, γ1, γ12, γ2] = −

∂h
∂αi

[α1, γ1, h(α1, γ1, γ12, γ2), γ2]
∂h
∂α2

[α1, γ1, h(α1, γ1, γ12, γ2), γ2]
.

Using (B.4), we conclude that ∂
∂α1

k(α1, γ1, γ2, γ3, γ12, γ13) < 0 and, therefore, k is invertible.
Finally, by (B.5.i), the identification of the remaining discrimination parameters then follows.

The previous arguments have been established assuming that the distribution generating the
person specific abilities is known. If such a distribution is known up to the scale parameter σ , the
previous arguments apply for α̃j = αjσ . Thus, we obtain the following theorem.

Theorem B.1. Consider the statistical model induced by both the 2PL model (B.1) and the per-
son specific abilities distributed according to a distribution G known up to the scale parameter σ ,
where the F is a strictly continuous increasing distribution function with a density function f

strictly positive on R. The parameters of interest (α1:J ,β1:J , σ ) are identified by one observation
provided that

1. At least three items are available.
2. The discrimination parameter α1 is fixed at 1.

If the distribution G is fully known, then parameters of interest (α1:J ,β1:J ) are identified pro-
vided that at least three items are available.

It is relevant to remark that the positivity of the discrimination parameters is established by
the identification analysis.

Appendix C. Proof of Theorem 5

The identification analysis of the parameters of interest (β1:∞, c1:∞,G) should be done in
the asymptotic Bayesian model defined on (Y i ,β1:∞, c1:∞,G), where Y i ∈ {0,1}N corresponds
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to the response pattern of person i. According to Definition 2, the corresponding minimal suffi-
cient parameter is given by the following σ -field:

A∗ .= σ
{
E(f | β1:∞, c1:∞,G) : f ∈ [

σ(Y 1)
]+}

,

where [σ(Y 1)]+ denotes the set of positive functions f such that f = g(Y 1), with g a measur-
able function. The identification of the semi-parametric 1PL-G model leads to proving, under
identification restrictions if necessary, that (β1:∞, c1:∞,G) is a measurable function of the pa-
rameter A∗. By the Doob–Dynkin lemma, this is equivalent to proving that, under identification
restrictions if necessary,

σ(β1:∞, c1:∞,G) = A∗.

This equality relies on the following steps:

STEP 1: By the same arguments used to establish identity (4.4), it follows that

σ(β2:∞, δ2:∞)
.= σ(βj : j ≥ 2) ∨ σ(δj : j ≥ 2) ⊂ A∗,

where δj
.= 1 − cj .

STEP 2: Hypotheses H1, H2, H3, and H4 jointly imply that {(uj , vj ) : 2 ≤ j < ∞} are iid con-
ditionally on (β1, δ1,K,H). By the Strong Law of Large Numbers, it follows that

Wβ1,δ1(B)
.= P

[
(u2, v2) ∈ B | β1, δ1,K,H

] a.s.= lim
m

sup
1

m

∑

1≤j≤m

1{(uj ,vj )∈B}

for B ∈ B+ × B. But Propositions 2 and 3 ensure that {uj : 2 ≤ j < ∞} and {vj : 2 ≤ j < ∞}
are identified parameters. It follows that {(uj , vj ) : 2 ≤ j < ∞} is measurable w.r.t. A∗ and,
consequently, Wβ1,δ1(B) is measurable w.r.t. A∗ for all B ∈ B+ × B. The upper-bar denotes a
σ -field completed with measurable sets; for a definition, see Chapter 2 in Florens et al. (1990).

STEP 3: Using (4.4), it follows that

E(Yij | β1:∞, c1:∞, θ1:∞) = 1 − δj e
βj

eβj + eθi

= 1 − uj

vj + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)
,

and

piJ
.= E[Y iJ | β1:∞, c1:∞, θ1:∞]

= 1 − 1

J

∑

1≤j≤J

uj

vj + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)
.

STEP 3.A: By the law of large deviations (see Shiryaev, 1995, Chapter IV, Section 5), it follows
that

Y iJ − piJ −→ 0 a.s. conditionally on (β1, δ1, θi) as J → ∞.
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But as J → ∞

piJ −→ 1 − E

[
uj

vj + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)

∣∣∣ β1, δ1, θi

]
a.s. conditionally on(β1, δ1, θi)

=
∫

R+×R

{
1 − u

v + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)

}
Wβ1,δ1(du, dv)

.= p(β1, δ1, θi).

Therefore,

Y iJ −→ p(β1, δ1, θi) a.s. conditionally on (β1, δ1, θi) as J → ∞.

STEP 3.B: It follows that, for all g ∈ Cb([0,1]),
g(Y iJ ) −→ g

(
p(β1, δ1, θi)

)
a.s. and in L1 conditionally on (β1, δ1, θi) as J → ∞.

Then for all g ∈ Cb([0,1]),
E

[
g(Y iJ ) | β1:∞, c1:∞,G

] −→ E
[
g
(
p(β1, δ1, θi)

) | β1:∞, c1:∞,G
]

a.s.

=
∫

g

{
1 − E

[
uj

vj + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)
| β1, δ1, θi

]}
G(dθ).

By definition of conditional expectation, E[g(Y iJ ) | β1:∞, c1:∞,G] is measurable w.r.t. A∗.
Thus,

∫

R+
g

{
1 − E

[
uj

vj + 1
δ1

+ 1
δ1 exp(β1)

exp(θi)

∣∣∣ β1, δ1, θi

]}
G(dθ)

is measurable w.r.t. A∗; the bar is added because such an integral is the a.s. limit of the sequence
{E[g(Y iJ ) | β1:∞, c1:∞,G] : J ∈ N}.

STEP 3.C: Using the transformation (4.10), it is follows that
∫

R+
g
[
L(x)

]
Gβ1,δ1(dx) is A∗-measurable,

where

L(x) =
∫

R+×R

(
1 − u

v + x

)
Wβ1,δ1(du, dv).

The function L(·) is a strictly continuous function from (δ−1,∞) to (0,1) that is known because
it is measurable w.r.t. σ(Wβ1,δ1). By STEP 2, σ(Wβ1,δ1) ⊂ A∗. In particular, for every function
f ∈ Cb(R

+), take g(y) = f [L(y)], where L(α) = inf{x : L(x) ≥ α}. It follows that
∫

R+
f (x)Gβ1,δ1(dx)

is measurable w.r.t. A∗. Considering

fn(y) = 1(0,x](y) + [
1 − n(y − x)

]
1

(x,x+ 1
n
)
(y) ↓ 1(0,x](y) ∀x ∈ R

+,

as n → ∞, the monotone convergence theorem implies that, for every x ∈ R
+, Gβ1,δ1((0, x]),

and so Gβ1,δ1 , is measurable w.r.t. A∗.
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STEP 4: From STEPS 1 and 3C, it follows that (β2:∞, δ2:∞,Gβ1,δ1) is measurable w.r.t. A∗. By
the Doob–Dynkin lemma, this is equivalent to

σ(β2:∞, δ2:∞) ∨ σ(Gβ1,δ1) ⊂ A∗.

However, σ(Gβ1,δ1) ⊂ σ(G) ∨ σ(β1, δ1). Therefore, two restrictions should be introduced in
order to obtain the equality σ(Gβ1,δ1) = σ(G)∨σ(β1, δ1). Two possibilities can be considered:

1. The first possibility consists in fixing two q-quantiles of G. In fact, let

x1 = inf
{
x : Gβ1,δ1(x) > q1

}
, x2 = inf

{
x : Gβ1,δ1(x) > q2

}
.

Using (4.10), this is equivalent to

β1 + ln(δ1x1 − 1) = y1 = inf
{
y : G(y) > q1

}
,

β1 + ln(δ1x2 − 1) = y2 = inf
{
y : G(y) > q2

}
.

It follows that

β1 = ln

[
x1e

y2 − x2e
y1

x2 − x1

]
, δ1 = ey2 − ey1

x1ey2 − x2ey1
;

that is, β1 and δ1 are identified since x1, x2, y1, y2 depends on G that it is identified.
2. The second possibility consists in fixing the mean and the variance of the distribution of

exp(θ), namely

EG

(
eθ

) = μ, VG

(
eθ

) = σ 2.

Using (4.10), this is equivalent to

m = EGβ1,δ1
(X) = 1

δ1
+ μ

δ1eβ1
, v2 = VGβ1,δ1

(X) = σ 2

δ2
1e2β1

.

It follows that

β1 = ln

(
mσ

v
− μ

)
, δ−1

1 = m − μv

σ
.

For instance, if μ = 0 and σ = 1, then

β1 = ln

(
m

v

)
, δ1 = 1

m
;

that is, β1 and δ1 are identified since m and v depend on G which is identified.
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