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Abstract. The role of identification in the Bayesian approach is still de-
batable. Since Lindley [Bayesian Statistics. A Review (1971) Philadelphia],
most Bayesian statisticians pretend that unidentifiabiity causes no real dif-
ficulty in their approach. Recently, Wechsler, Izbicki and Esteves [Amer.
Statist. 67 (2013) 90–93] provide a simple example illustrating this perspec-
tive. By critically reading Wechsler, Izbicki and Esteves [Amer. Statist. 67
(2013) 90–93], we intend to show that the Bayesian approach is far from be-
ing free of the identification problems, provided that the interest is focused
on the interpretation of the parameters. It is written using a rather ancient
style, the so-called Platonic dialogues. In modern times, there are beautiful
examples of that, particularly in Foundations of Mathematics, where debat-
able subjects are discussed: let us refer Heyting [Intuitionism. An Introduc-
tion (1971) North-Holland Publishing Company], where the debate between
a formalist and an intuitionist is presented as a dialogue; or Lakatos [Proofs
and Refutations. The Logic of Mathematical Discovery (1976) Cambridge
University Press], where the relationship between proofs and conjectures is
magnificently illustrated. We hope that this style will help to understand why
identifiability really matters in the Bayesian approach.

1 Introduction

The dialogue takes place in an imaginary classroom where some basic concepts re-
lated to statistical model construction were being discussed. One of those concepts
is the concept of identification. The previous session was focused on understand-
ing how identifiability became a statistical problem and, particularly, related to
the statistical meaning of a parameter. At the beginning of the current session, the
TEACHER does the following summary.

In 1922, R. A. Fisher pointed out that, in spite of the large amount of fruitful
applications of statistics, its basic principles were still in a “state of obscurity”
and that “during the recent rapid development of practical methods, fundamental
problems have been ignored” (Fisher (1922), p. 310). This evaluation led Fisher to
define the scope of statistical methods as the reduction of data. “No human mind
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is capable of grasping in its entirety the meaning of any considerable quantity of
numerical data” (Fisher (1973), p. 6). Consequently, data should be replaced by
a relatively few quantity of values which shall contain the relevant information
provided by the original data.

Conceptually speaking, the reduction of data is accomplished by constructing
a hypothetical infinite population, of which the actual data are considered a ran-
dom sample. This hypothetical population is fully characterized by a probability
distribution, which in turn is specified by relatively few parameters. The param-
eters “are sufficient to describe it exhaustively in respect of all qualities under
discussion”. Thus, any information provided by a sample, which is used to esti-
mate those parameters, is relevant information. This conceptual scheme leads to
distinguish three problems of statistics (Fisher (1922, 1973), Chapter 1): Problems
of Specification, Problems of Estimation and Problems of Distribution. Problems
of Specification arise in the choice of the mathematical form of the probability dis-
tribution which characterizes the observed population. Its choice “is not arbitrary,
but requires an understanding of the way in which the data are supposed to, or did
in fact, originate” (Fisher (1973), p. 8).

How to make precise the way in which the data are generated? A quarter of
century later, Koopmans and Reiersøl suggested a response, which leads to re-
formulate the specification problem as defined by Fisher. Such a reformulation,
“appropriate to many applications of statistical methods”, is based on a distinction
between population and structure:

In many fields the objective of the investigator’s inquisitiveness is not just a “popula-
tion” in the sense of a distribution of observable variables, but a physical structure pro-
jected behind this distribution, by which the latter is thought to be generated. The word
“physical” is used merely to convey that the structure concept is based on the investi-
gator’s ideas as to the “explanation” or “formation” of the phenomena studied, briefly,
on his theory of these phenomena, whether they are classified as physical in the literal
sense, biological, psychological, sociological, economic or otherwise (Koopmans and
Reiersøl (1950), p. 165).

A structure is determined on the basis of a substantive theory, combined with
systematically collected data for the relevant variables. The collected data are rep-
resented by observed variables, whereas (some) aspects of a substantive theory
are represented by unobservable or latent ones. Thus, a structure is composed of a
particular probability distribution of the latent variables, combined with a relation-
ship between the observed and unobserved variables. Koopmans and Reiersøl’s
reformulation of the specification problem is accordingly defined as follows:

The specification is therefore concerned with the mathematical forms of both the dis-
tribution of the latent variables and the relationships connecting observed and latent
variables (p. 168).

The distribution of the observed variables is regarded as produced by an oper-
ation performed on the distribution of the unobserved variables. The specification
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problem is, therefore, concerned with specifying a model which, by hypothesis,
contains the structure generating the distribution of the observed variables. The
result of this reformulation is the emergence of the identification problem: can the
distribution of the observations, generated by a given structure, be generated by
only one structure in that model? When the answer is affirmative, it is said that
the structure is identified by the observations. In such a case, the structure has a
statistical meaning in the sense that it is supported by the observations through the
probability distribution of the observations (Koopmans (1949), Hurwicz (1950),
Clifford (1982), Manski (1995)). The main characteristic of the so-called struc-
tural modeling is that it considers structures and/or parameters as endowed with a
meaning that should be supported by the observations.
TEACHER: How can we make precise the last statement, namely that once a pa-
rameter is identified, it is then endowed with a statistical meaning? By using a
concept of Bayesian identification, we will show that identified parameters can
be expressed as functions of the data generating process. In this way, the statisti-
cal meaning of a parameter can actually be based on empirical information only.
However, our discussion should take into account Lindley’ statement “unidentifi-
ability causes no real difficulty in the Bayesian approach” (Lindley (1971)). Our
challenge is to show that this statement intends to summarize Bayesian inferential
aspects only, but does not prevent on the ambiguousness on the statistical meaning
of unidentified parameters.

2 Identifiability in a sampling theory framework approach

TEACHER: In order to answer this question, let us recall the definition of identifi-
ability. This definition depends on a more fundamental concept: what is it?
PUPIL TAU: It’s the concept of statistical model; in the last session, we learnt it. It
come back to Fisher (1922).
TEACHER: It’s correct. Now the question is, why identifiability depends on the
concept of statistical model?
PUPIL ALPHA: Because identifiability deals with the relationship between param-
eters and sampling probabilities (or the corresponding likelihood functions when a
dominated statistical model is considered; see Barra (1981), Chapter 1). The con-
cept of statistical model emphasizes the fact that a statistical model is a family of
sampling distributions indexed by a parameter.
TEACHER: This is an exact statement. Let us formalize it. Who can do that?
ALPHA: The components of a statistical models are the following:

• Sample space (S,S), where S is the set of all possible outcomes, and S is the
σ -field of subsets of S: the elements of S are considered as the events of interest.

• A probability distribution P θ defined on the sample space (S,S), where θ is a
parameter. P θ is accordingly called sampling distribution or sampling probabil-
ity.
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• θ ∈ �, where the set � is called parameter space.

Thus, a statistical model can compactly be written as

E = {
(S,S) : P θ : θ ∈ �

}
.

When the statistical model is dominated (that is, when for all θ ∈ �, P θ is abso-
lutely continuous with respect to a σ -finite measure λ defined on (S,S), the sta-
tistical model is equivalently described through the likelihood function pθ , where
pθ = dP θ

dλ
:

E = {
(S,S) : pθ : θ ∈ �

}
.

TAU: It is important to remark that this concept covers what it is commonly called
parametric, semi-parametric and non-parametric models: the distinction depends
on the structure of �. Thus, the parameter space � of a parametric model is
contained in a finite-dimensional space; for non-parametric models, the parame-
ter space � is an infinite-dimensional space; semi-parametric models can be de-
scribed by saying that � is a cartesian product of the form A × � , where A is a
finite-dimensional space and � is an infinite-dimensional space.
TEACHER: The definition of statistical model implicitly involves a relationship be-
tween the parameter space and the set of sampling distributions defined on (S,S).
If we denote this set as P(S,S), such a relationship corresponds to the mapping
� : � −→ P(S,S) such that �(θ) = P θ for θ ∈ �.

Our interest is focused on the sample space (S,S): there we collect specific
features of interest characterizing a particular population. For instance, the number
of correct responses in a test of 40 items. A sampling probability P θ is supposed
to describe the behavior of those features. This behavior could be interpreted as the
variability of such features across the population. The relevant point here is that
P θ fully characterizes the population that is analyzed with respect to those features
of interest. If we accept that, then we focus our interest on the family {P θ : θ ∈ �},
assuming that θ is a characteristic of P θ which in turn describes the units of the
population in terms of those features of interest. As Fisher said, the parameters
“are sufficient to describe [the population of interest] exhaustively in respect of all
qualities under discussion” (Fisher (1973)).
PUPIL SIGMA: That explains why we are interested in the mapping �! Thus, it is
not desirable that two different parameters be related to the same sampling prob-
ability: if not, a same feature of interest can be explained by two different set of
data each of them generated by different sampling probabilities.
TAU: Now I understand the formal definition of identifiability; that is,

θ1 �= θ2 =⇒ P θ1 �= P θ2 .

That is, the mapping � is injective.
SIGMA: This definition also shows why it is not possible to make inferences on
unidentified parameters. In fact, if θ1 �= θ2, but P θ1 = P θ2 .= P θ , then the data we
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use to make inference on the parameter are supposed to be generated by P θ . But
P θ is related to θ1 as well as to θ2! That is, observations do not provide information
on a unique parameter. Econometric as well as psychometric jargon is, in this
respect, palatable: θ1 and θ2 are observationally equivalent.
TEACHER: The previous discussion deserves several remarks:

1. The concept of identifiability supposes a hypothetical knowledge of the sam-
pling probabilities {P θ : θ ∈ �}. An exact knowledge of them cannot be derived
from any finite number of observations. Consequently, “by hypothesizing nev-
ertheless the full availability of such knowledge, we obtain a clear separation
between problems of statistical inference arising from the variability of finite
samples, and problems of identification in which we explore the limits to which
inference even from an infinite number of observations is suspect” (Koopmans
(1949)); see also Manski (1995).

2. The eventual limitations of statistical inference due to identification problems
are typically described through the following results:

• In a given statistical model E , if θ is unidentified, then there not exists an
unbiased estimator of it.

• In a given statistical model E , if θ is unidentified, then there not exists a
consistent estimator of it.

Proofs of these results can be found in Gabrielsen (1978), with a correction in
San Martín and Quintana (2002) and Paulino and Pereira (1994).

3 Revising unidentified parameters

PUPIL KAPPA: These considerations help to show the advantage of the Bayesian
approach over the sampling theory framework approach because, according to
Lindley, unidentifiability causes no real difficulty in the Bayesian framework.
TEACHER: Could you be more precise? Can you explain why the Bayesian ap-
proach seems to be stronger than the sampling theory framework approach? I’m
just asking to explain in which sense Lindley’s statement is related to inferential
aspects rather than to structural modeling ones.
KAPPA: Yes, I can explain Lindley’s statement using a simple example recently
published by Wechsler, Izbicki and Esteves (2013).
TEACHER: Let us download the paper, thus we can follow the details.

...

Some minutes after, all the students have access to Wechsler, Izbicki and Esteves
(2013), and realize that its merit is to provide a simple example of nonidentifiabil-
ity. In fact, most of the examples of nonidentifiability “occur in areas of statistics
that require further statistical background such as linear models, time series, and
survival analysis”.
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TEACHER: This paper is suitable for us because, as the authors state, “students in
statistics can be introduced to the subject through straightforward examples”.
SIGMA: Moreover, the following statement is crucial for our future work as statisti-
cians: “Understanding nonidentifiability and its consequences can be crucial when
designing new experiments and analyzing data”.
KAPPA: Yes, the example on which we will focus our attention is at page 91, taken
from an exercise on probability (Ross (2009), p. 111):

“A ball is in any one of n boxes and is in the ith box with probability pi . If the ball is in
box i, a search of that box will uncover it with probability αi . Show that the conditional
probability that the ball is in box j , given that a search of box i did not uncover it, is

pj

1 − αipi
if j �= i, and

(1 − αi)pi

1 − αipi
if j = i.”

TAU: How this example will help us to understand why under a Bayesian approach
inferences on unidentified parameters can be performed?
SIGMA: The objective of Wechsler, Izbicki and Esteves (2013) is precisely to an-
swer this question!
TEACHER: Could you explain us their answer?
SIGMA: Let me try! Kappa, help me!
KAPPA: The first key consideration is the following comment on Ross’s exercise:
“This problem exemplifies the use of Bayes theorem, to evaluate how an opinion
on the occurrence of an event is updated by the evidence of experimental data”.
That is, Ross’s example illustrates a basic aspect of Bayesian inference.
TAU: Good remark! Bayesian approach involves a specific inferential paradigm:
we update our prior opinions by taking into account the observations. But, where
is the prior information in this example? Where the experimental data are?
SIGMA: Your questions are actually answered in the paper. The authors rephrase
Ross’s problem in the following terms:

“A missing plane has crashed in one of n possible regions. A search for the plane is
then performed in region i; pi is the probability that the plane has gone down in region
i and αi the probability that the plane will be found in a search of the ith region when it
is, in fact, in that region. We consider 0 < pi < 1 and 0 < αi < 1 to make the problem
reasonable and avoid trivialities.”

TAU: Considering that rephrasing, we note that the parameter of interest is the
region in which the plane has gone down; let us denote it as θ . The parameter space
can be represented by a set of integers because each region is labeled by a number.
Thus, the parameter space � corresponds to the set {1,2, . . . , n}. Therefore, the
prior specification is the following:

pj = P [θ = j ], j = 1,2, . . . , n.

SIGMA: The experimental data is represented by the random variable X: X = 1 if
the plain is found in region i; 0 otherwise. Thus, X ∈ {0,1} and, according to the
conditions of the problem,

P [X = 0 | θ = j ] = 1 if j �= i, P [X = 1 | θ = i] = αi.
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Therefore, a routine application of Bayes theorem gives us (for j �= i)

P [θ = i | X = 1] = 1, P [θ = i | X = 0] = (1 − αi)pi

1 − αipi

,

P [θ = j | X = 1] = 0, P [θ = j | X = 0] = pj

1 − αipi

.

ALPHA: Before continuing, it seems relevant to rewrite the example in terms of
the formal concept of statistical model. We start from the observations—or experi-
mental data—which are actually represented by a statistical model. In our case, its
components are the following:

• Sample space: ({0,1}, {∅, {0}, {1}, {0,1}}).
• Sampling probabilities: for simplicity, let me suppose that the label i of the orig-

inal problem corresponds to 1; then the sampling probabilities are the following:

P [X = 1 | θ = 1] = α1, P [X = 1 | θ = j ] = 0 for all j ≥ 2.

It is clear how these probabilities are indexed by the parameter θ .
• Parameter space: � = {1,2, . . . , n}.
Thus, compactly written, the statistical model corresponding to the problem at
hand is given by

E = {({0,1}, {
∅, {0}, {1}, {0,1}}),P [• | θ ] : θ ∈ �

}
,

where

P [X = 0 | θ ] = (1 − α1)1{θ=1} +
n∑

j=2

1{θ=j}.

TAU: How the prior information is considered in this structure?
ALPHA: We learnt that for defining a probability measure, we need a measurable
space, that is, a set M of possible outcomes or results, and a σ -field of subsets of
M . Now, we want to define a probability on the parameter space �. Because � is
a finite set, we use the class of all the subsets of �, denoted as P(�). Thus, our
measurable space is given by (�,P(�)). In order to define a probability on it, it
is enough to take n real numbers p1,p2, . . . , pn such that

0 ≤ pj ≤ 1,

n∑
j=1

pj = 1.

We interpret pj as P [θ = j ]. The prior distribution corresponds, therefore, to the
vector (p1,p2, . . . , pn)

′: there are as many prior distributions as numbers pj ’s we
choose. Each person—as Bayesian statisticians say—chooses as its initial opinion.
TAU: Summarizing, then, we have, on the one hand, the statistical model

E = {
({0,1},P({0,1}),P (• | θ) : θ ∈ �

}
,
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Table 1 Joint probability distribution of (X, θ)

{X = 0} {X = 1}
{θ = 1} (1 − α1)p1 α1p1
{θ = 2} p2 0
{θ = 3} p3 0
...

...
...

{θ = n} pn 0

where

P [X = 0 | θ ] = (1 − α1)1{θ=1} +
n∑

j=2

1{θ=j };

and, on the other hand, the prior specification (�,P(�),p), where p = (p1,p2,

. . . , pn)
′ with pj = P [θ = j ].

ALPHA: These elements allow us to construct a Bayesian model, which is charac-
terized by a unique probability defined on the product space “parameters × obser-
vations”. In our case, the Bayesian model is given by(

� × {0,1},P(�) ⊗P
({0,1}),�)

,

where � can be fully described by the Table 1.
TEACHER: It is time to get two important conclusions:

• The starting point to perform an identification analysis is the specification of the
statistical model, or likelihood function: this is a component common to statisti-
cians following either the Bayesian approach, or the sampling theory framework
approach.

• The structural difference between a Bayesian model and a statistical model is
that a Bayesian model corresponds to a unique probability measure defined on
the product space “parameters × observations”, whereas a statistical model cor-
responds to a family of sampling distributions indexed by a parameter. Thus, the
Bayesian reasoning is done using one probability; the reasoning in a sampling
theory framework approach is done with respect to a family of probabilities.

PUPIL DELTA: What are the consequences of such a structural difference?
TEACHER: Before answering this relevant question, let us continue our reading
of Wechsler, Izbicki and Esteves (2013). In fact, we just constructed the Bayesian
model . . . ; we want to understand how unidentified parameters are treated in this
set-up.
KAPPA: Let us consider the sampling distributions. It is easy to verify that the
parameter θ is unidentified. In fact,

P [X = 1 | θ = 2] = P [X = 1 | θ = 3] = 0,

P [X = 0 | θ = 2] = P [X = 0 | θ = 3] = 1.
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That is, we found at least two different parameters such that the respective sam-
pling probabilities are equal.
SIGMA: In spite of this identification problem, it is still possible to make infer-
ences on all the parameters θ , in particular on those that are unidentified. Thus, for
instance,

P [θ = 2 | X = 0] = p2

1 − α1p1
, P [θ = 2 | X = 1] = 0.

KAPPA: Those computations show the advantage of the Bayesian approach when
compared to the sampling theory framework approach:

“We reinforce that even a nonidentifiable model may bring information about the pa-
rameters of interest. Bayesian inference is easily performed in cases of nonidentifiabil-
ity [. . . ] Nonidentifiability may bring undesirable nonuniqueness to the ML estimation
method” (Wechsler, Izbicki and Esteves (2013), p. 93).

DELTA: Wow! These considerations seem to illustrate Lindley’s statement: it is
always possible to learn about unidentified parameters, while in a sampling theory
framework it is impossible to say anything about them.

4 Constructing a Bayesian identification concept

TAU: Yes . . . but let us consider your previous question, Delta: how the structural
difference between both approaches have an impact on the construction of statisti-
cal concepts. I mention that because we learnt that to construct a Bayesian model,
we endow the parameter space with a probabilistic structure. However, the concept
of identifiability is defined in terms of the injectivity of a mapping � (previously
introduced by the Teacher): this property does NOT require any probabilistic struc-
ture on the parameter space!
TEACHER: This is a remarkable comment. The concept of identification couched
in a sampling theory framework needs to be either translated, or reframed in
Bayesian terms. In other words, we need to define a pertinent Bayesian concept
of identification: once this is done, the second task will be to study if such a con-
cept is related to the identification concept previously introduced, or not.
DELTA: By the way, Wechsler, Izbicki and Esteves (2013) use the identification
concept couched in a pure sampling framework approach! If I understood correctly
your remark, Teacher, we need to interpret the, let say, standard concept in terms
of the Bayesian paradigm: is my intuition correct?
TEACHER: Yes, it is.
DELTA: We have to start with a Bayesian model, therefore, where parameters and
observations are endowed with a probability distribution.
TEACHER: Let us denote it as �(X,θ), where X denotes the observations and θ

the parameters. This probability is defined on the product space (� × S,A ⊗ S),
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where A is a σ -field of subset of � and S is a σ -field of subsets of S. Now, in a
Bayesian model the probability � is decomposed in two complementary ways:

�(X,θ) = p(X | θ)μ(θ)

= μ(θ | X)p(X),

where p(X | θ) is the sampling distribution, μ(θ | X) is the posterior distribution,
μ(θ) is the prior distribution, and p(X) is the predictive distribution. However,
p(X | θ) and μ(θ | X) satisfy additional properties, in particular that p(X | •) as
a function of the parameter is measurable with respect to A, and μ(θ | •) as a
function of the observations is measurable with respect to S .

Additional remark: when the sampling probability P θ is represented through a
density l(x | θ), the previous decomposition of �(X,θ) can be performed only if
l(• | •) is a bi-measurable function with respect to A⊗ S . This condition is NOT
related to (un-)identifiability and, therefore, the existence of posterior distribution
is just a matter of measurability. Doob (1953) provides a sufficient condition to
ensure such a bi-measurability property. Under this condition, Mouchart (1976)
deduces the Bayes theorem: such a deduction helps us to understand the “troubles”
with improper priors. But let discuss these issues in a next session (in Appendix,
we summarize the arguments).
ALPHA: In a Bayesian model, how can we define a parameter of interest?
TEACHER: A parameter (of interest) is a measurable function of θ , say ψ

.= g(θ).
Following Basu and Pereira (1983) and Florens and Mouchart (1985), we denote
it as ψ ⊂ θ .
KAPPA: If ψ is of interest, then I focus my inference on it: I update it by computing
μ(ψ | X).
TEACHER: How do you do that?
KAPPA: First, I obtain �(X,ψ) from �(X,θ) by marginalization with respect to
μ(θ | ψ), the conditional prior distribution of θ given ψ . Thereafter, I apply the
Bayes theorem.
TEACHER: Could you be more explicit, please?
KAPPA: Well, let me suppose that the parameter θ is decomposed as θ = (ψ,λ) [as
done by Poirier (1998)]. Then the two complementary decompositions of �(X,ψ)

are the following:

�(X,θ) = p(X | ψ)μ(ψ)

= μ(ψ | X)p(X),

where the likelihood p(X | ψ) is obtained by integrating out with respect to μ(λ |
ψ):

p(X | ψ) =
∫

p(X | θ)μ(λ | ψ)dλ. (4.1)

TEACHER: This shows that a Bayesian model can be reduced—to use the termi-
nology introduced by Basu (1975), who borrowed it from Fisher (1922). In fact,
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a probability distribution can be reduced either by marginalization or by condi-
tionalization. Now, the reduction performed by you, Kappa, modifies the orig-
inal data generating process because p(X | θ) is a function of λ and therefore
p(X | θ) �= p(X | ψ).
TAU: So, each time we focus our attention on a parameter g(θ), it is enough to
perform a reduction of the original Bayesian model.
TEACHER: No; your statement is incorrect. If the data generating process is ini-
tially described by the sampling distribution p(X | θ), the Bayesian inference
should be performed with respecto to such a distribution. When you perform a
reduction in order to obtain p(X | ψ), you change the likelihood and, therefore,
you not only change the original problem, but also the original data. However, the
concept of reduction of a Bayesian model is relevant to define identifiability in
Bayesian terms.
TAU: Why?
TEACHER: Because such a tool allows us to define the concept of sufficient param-
eter: in the Bayesian model �(X,θ), a subparameter ψ ⊂ θ is said to be sufficient
if ψ describes the sampling process, being θ redundant.
TAU: Do you mean that p(X | θ) can be “replaced” by p(X | ψ) without losing
relevant information? I say that because I remember a similar statement when we
study sufficient statistics.
TEACHER: Yes, it is correct.
ALPHA: Taking into account that ψ ⊂ θ , we can use a probabilistic tool to formal-
ize the definition of sufficient parameter, the tool of conditional independence. We
know that it is very efficient to use it as a language to represent statistical concepts!
TEACHER: I agree . . . it were just my following remark . . . but go ahead, shows
us the formalization.
ALPHA: If I take Tau’s statement, I mean p(X | θ) = p(X | ψ), then I can write

X ⊥⊥ θ | ψ, where ψ ⊂ θ.

TEACHER: That is correct. Just remark that such a condition is well defined with
respect to the probability �.
TAU: To what extend a reduction performed under the condition X ⊥⊥ θ | ψ is
different from a reduction performed without assuming such a condition?
ALPHA: Well, let consider your computation of the likelihood p(X | ψ) (see equal-
ity (4.1)). Under the condition X ⊥⊥ θ | ψ , p(X | θ) = p(X | ψ) and, therefore,

p(X | ψ) =
∫

p(X | θ)μ(λ | ψ)dλ

= p(X | ψ)

∫
μ(λ | ψ)dλ

= p(X | ψ) × 1.

That is, the original likelihood was not modified and, consequently, we can say
that the condition X ⊥⊥ θ | ψ ensures that the reduction of the original Bayesian
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model is performed without loosing any relevant information. Consequently, the
conditional prior μ(λ | ψ) is not useful to performing an update.
DELTA: Is it possible to interpret the definition of sufficient parameter in Bayesian
terms? I make this question because the equality p(X | θ) = p(X | ψ) is easily
understood in a sampling theory approach.
ALPHA: I guess it is possible if we recall the symmetry of the conditional inde-
pendence, namely

X ⊥⊥ λ | ψ ⇐⇒ λ ⊥⊥ X | ψ.

Thus, μ(θ | X,ψ) = μ(λ | ψ).
DELTA: That is interesting because μ(λ | ψ) is the conditional prior distribution
used by Kappa to reduce �(X,θ) into �(X,ψ). It means that, once we condition
on ψ , the observation X does not bring information on θ = (λ,ψ): this is exactly
Alpha’s statement on the uselessness of μ(λ | ψ)! This is a notion already intro-
duced by Dawid (1979), and widely used by Poirier (1998) in a paper dealing with
revising belief in nonidentified models.
TEACHER: Your remarks are correct. Let me add a last one: a conditional inde-
pendence condition can be defined in terms of conditional expectations, as shown
by Dellacherie and Meyer (1975) and widely pursued by Florens, Mouchart and
Rolin (1990). Thus, X ⊥⊥ θ | ψ means that (because ψ ⊂ θ )

E
[
f (X) | θ] = E

[
f (X) | ψ]

for all positive measurable function f ; or, equivalently,

E
[
h(θ) | X,ψ

] = E
[
h(θ) | ψ]

for all positive measurable function h.
TAU: I guess I understood this definition. My question now is, how can we use this
concept to define identifiability in Bayesian terms?
TEACHER: First, remark the following fact:

X ⊥⊥ θ | ψ and ω ⊂ θ =⇒ X ⊥⊥ θ | (ψ,ω).

That is, once we have a sufficient parameter, we can find out as many sufficient
parameters as subparameters ω we get!
ALPHA: This means that if the sampling process is described by ψ , at the same
time is described by (ψ,ω) because

E
[
f (X) | ψ] = E

[
f (X) | θ] = E

[
f (X) | ψ,ω

]
for all positive measurable function f . Therefore, in the description of the sam-
pling process there is a kind of “indeterminacy”!
TEACHER: That is correct. So, the question is, how this “indeterminacy” can be
avoided?
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TAU: I guess to answer this question, it is relevant to note that

ψ ⊂ (ψ,ω) ⊂ θ.

Is it helpful?
TEACHER: Yes! It shows that, once we have a sufficient parameter, it is always
possible to find out a “bigger” one.
TAU: So, it is enough to find out the “smallest” sufficient parameter.
TEACHER: Could you formalize your statement?
TAU: Well, let me denote the “smallest” sufficient parameter as θmin. Then, it
should satisfy the definition of sufficient parameter, so

X ⊥⊥ θ | θmin.

Now θmin is the smallest one, hence θmin is a function of all sufficient parameter,
but there not exists a sufficient parameter that is a function of θmin.
TEACHER: This is a good definition. Let me summarize it: let �(X,θ) be a
Bayesian model. We said that θmin ⊂ θ is a minimal sufficient parameter if the
following two conditions hold:

• X ⊥⊥ θ | θmin.
• X ⊥⊥ θ | ψ with ψ ⊂ θ , then θmin ⊂ ψ a.s.

This last condition depends on the prior distribution.
TAU: Therefore, θmin fully describes the sampling process in the sense that the
sampling process is parameterized unambiguously. Moreover, θmin is the smallest
parameter conditionally on which all other parameter is not updated by the data.
TEACHER: It is time to define identifiability in a Bayesian framework. We said
that θ is Bayesian identified by X if and only if θ = θmin with prior probability 1.
DELTA: The way we follow to define Bayesian identifiability is quite clear. But
how can we ensure the existence of the minimal sufficient parameter?
TEACHER: This is an excellent question: by answering, we will obtain an opera-
tional characterization of θmin.
KAPPA: Show us the existence of θmin!
TEACHER: To do that, we will use two concepts we learnt in probability theory:

• How we characterize the smallest σ -field that makes a function measurable?
(this corresponds to the σ -field generated by a function).

• How we characterize the measurability of a function with respect to a given
σ -field? (this corresponds to the Lemma of Dynkin–Doob).

KAPPA: Yes, we recall that. So, go ahead!
TEACHER: First, we begin with our Bayesian model �(X,θ), where � is defined
on the σ -field A⊗S . Second, let us define the class of sufficient parameters. To do
that, let us consider as a subparameter, a sub-σ -field of A—which can be viewed
as the σ -field generated by g(θ). Thus, the class


 = {B ⊂ A : S ⊥⊥ A | B}
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is the class of sufficient parameters. Why this class is non-empty?
KAPPA: Because A ∈ 
: it is easy to verify that S ⊥⊥A | A.
TEACHER: That it’s correct. Now, we need to recall a characterization of condi-
tional independence in terms of measurability.
DELTA: The property is in terms of σ -fields, and it is the following: let (M,M,P )

be a probability space and let M1,M2,M3 be sub-σ -fields of M. Then M1 ⊥⊥
M2 | M3 if and only if E(m1 | M2 ∨M3) is M3-measurable positive for all m1
M1-measurable positive function. Here M1 ∨ M2 = σ(M1 ∪ M2) and M3 is
the completed σ -field, where the completion is in terms of measurable null events,
that is,

M3 = M3 ∨ {
A ∈ M : P(A) ∈ {0,1}}.

TEACHER: Excellent! This property is very useful to ensure the existence of θmin.
In fact, because 
 �= ∅, if we take B1,B2 ∈ 
 then

• S ⊥⊥ A | B1 if and only if E[s | A] is B1-measurable positive for all s S-
measurable positive function.

• S ⊥⊥ A | B2 if and only if E[s | A] is B2-measurable positive for all s S-
measurable positive function.

It follows that E[s | A] is B1 ∩ B2-measurable positive function for all s S-
measurable positive function.; that is,

S ⊥⊥ A | B1 ∩B2,

so B1 ∩B2 ∈ 
.
DELTA: Your argument shows how a minimal sufficient parameter can be obtained:
it is enough to take the intersection of all the sufficient parameters in 
. It is, by
construction, the minimal one.
TEACHER: It is correct. The minimal sufficient parameter is given by

Bmin = ⋂
B∈


B.

Note that Bmin = Bmin, so the events of prior probability equal to 0 or 1 belongs
to Bmin. This is actually a pertinent Bayesian concept as far as it depends on the
prior distribution through the null events. Moreover, the existence of the minimal
sufficient parameter is ensured by construction.
KAPPA: I agree with the argument. Now, is it possible to offer an operational
characterization?
TEACHER: Yes, it is. Let us define the following subparameter:

σ
{
E[s | A] : s ∈ [S]+}

,

where [S]+ is the set of positive S-measurable functions. It is a subparameter
because it is contained in A by definition of conditional expectation. Somebody
can provide an interpretation?
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ALPHA: First, E[s | A] for s ∈ [S]+ is a sampling expectation, which is a measur-
able function of A. If we take the σ -field generated by the set {E[s | A] : s ∈ [S]+},
we obtain all the information provided by the sampling process . . . What it is nice
is that this σ -field is a sub-parameter!
TEACHER: Nice interpretation. Now, if we take into account that it is a σ -field
generated by a function, what can we state?
ALPHA: Well, that σ {E[s | A] : s ∈ [S]+} is the smallest σ -field that makes the
sampling expectations measurable.
TEACHER: That is correct. Now, if we focus on this last characterization, could
you write it in terms of conditional independence?
ALPHA: Let see . . . E[s | A] is σ {E[s | A] : s ∈ [S]+}-measurable for all s ∈
[S]+. This is equivalent to

S ⊥⊥A | σ {
E[s | A] : s ∈ [S]+}

if σ {E[s | A] : s ∈ [S]+} contains the prior null sets.
TEACHER: It’s correct, and in fact the last statement is true because

A∩ S ⊂ σ
{
E[s | A] : s ∈ [S]+}

.

To see that, it is enough to note that

A ∈ A∩ S ⇐⇒ A ∈ A and 1A = E[1A | S].
Remark that A∩S represents the parameters that are a.s. equal to observations. In
particular, this σ -field includes the events in A of prior probability equal to 0 or 1.
ALPHA: Therefore, we have that

S ⊥⊥A | σ {
E[s | A] : s ∈ [S]+}

,

which implies that σ {E[s | A] : s ∈ [S]+} ∈ 
. We conclude that

Bmin ⊂ σ
{
E[s | A] : s ∈ [S]+}

.

TEACHER: Correct! Who can prove the converse relationship?
KAPPA: This is straightforward. σ {E[s | A] : s ∈ [S]+} is the smallest σ -field that
makes E[s | A] measurable for all s ∈ [S]+. But S ⊥⊥ A | Bmin, hence Bmin makes
sampling expectations measurable. Therefore,

σ
{
E[s | A] : s ∈ [S]+} ⊂ Bmin.

TEACHER: Correct! Thus, we have proved that, in a Bayesian model, the mini-
mal sufficient parameter always exists and corresponds to σ {E[s | A] : s ∈ [S]+}.
Moreover, the Bayesian model �(X,θ) is Bayesian identified if and only if

σ
{
E[s | A] : s ∈ [S]+} =A.

SIGMA: I have a question: why we say that Bmin is the Bayesian identified pa-
rameter? I mean, our starting point was to look for a Bayesian concept that can
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be considered the Bayesian counterpart of the sampling theory framework con-
cept of identification. In which sense the concept developed up to now is such a
counterpart?
TEACHER: Good question! The answer is based on a theorem relating both con-
cepts. Without entering in details, if for instance both A and S are Borel σ -fields,
then the injectivity of the mapping θ �−→ P θ implies that θ is Bayesian identified
for all prior distribution. This important result was proved by Florens, Mouchart
and Rolin (1985). A systematic treatment can be found in Florens, Mouchart and
Rolin (1990), Chapter 4. This concept of identification has been used to analyze
the identifiability of semi-parametric Item Response Theory models (San Martín
et al. (2011), San Martín, Rolin and Castro (2013)) and to analyze the identifiabil-
ity of linear mixed-models with skew-elliptical distributions (Jara, Quintana and
San Martín (2008)).
SIGMA: This relationship actually allows us to say that the Bayesian identification
concept already developed is the counterpart of the sampling theory framework
concept. Now we have all the necessary concepts to revisit Wechsler, Izbicki and
Esteves (2013)’s example.

5 Revisiting Lindley’s (1971) claim

TEACHER: Yes, it is time to revisit Lindley’s (1971) claim. We already have spec-
ified the discrete Bayesian model used by Wechsler, Izbicki and Esteves (2013).
Now, let us focus our attention on the sampling distributions, which can be written
in the following terms:

P [X = 0 | θ ] = (1 − α1)1{θ=1} + 1{θ �=1},
where {θ �= 1} = {θ ∈ {2,3, . . . , n}}. Who can describe the corresponding minimal
sufficient parameter?
ALPHA: Well, taking into account that X is a binary random variable, it is enough
to characterize the following σ -field:

σ
{
P [X = x | θ ] : x ∈ {0,1}}.

Now, the sampling distribution is a simple function which takes only two different
values: (1 − α1) and 1. Therefore,

σ
{
P [X = x | θ ] : x ∈ {0,1}} = σ

{{θ = 1}, {θ �= 1}} = {
∅, {θ = 1}, {θ �= 1},�}

.

(5.1)
But ∅ and � are prior null events. Therefore, the Bayesian identified parameter is
characterized by the partition {{θ = 1}, {θ �= 1}}.
TEACHER: This is correct. Taking into account this finding, look at the probability
distribution describing the discrete Bayesian model (see Table 1).
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Rows 2,3, . . . , n are linearly dependent. This is a necessary and sufficient con-
dition to state that θ is not Bayesian identified by X. In fact, San Martín and
González (2010) show that if both θ and X are discrete random variables, and
P represents the joint probability distribution (P )ij

.= P [θ = i,X = j ], then θ is
Bayesian identified by X if and only if any two rows of P are linearly independent.
DELTA: I’m surprising because the lack of identifiability is, for instance, due to
the parameters {θ = 2} and {θ = 3}, as in the sampling framework!
TEACHER: It is not a surprise because both concepts are related! Moreover, when
P [θ = j ] > 0 for all j = 1, . . . , n, San Martín and González (2010) show that both
concepts are equivalent.
KAPPA: Let go to the updating process. I can update {θ = 1}. This is easy. But I
can also update {θ = j} for j ≥ 2, in spite that

{θ = j} /∈ {{θ = 1}, {θ �= 1}}.
TEACHER: Your statement need to be carefully considered. In fact, when we com-
pute the posterior probability of {θ = j} with j = 1,2, . . . , n, we consider the
measurability structure given by P({1,2, . . . , n}). In this context, we can compute
the posterior distribution not only of the identified parameters {θ = 1} and {θ �= 1},
but also of {θ = j} for j = 2,3, . . . , n. The corresponding posterior probabilities
are given by

P
[{θ = 1} | X] = (1 − α1)p1

1 − α1p1
1{X=0} + 1{X=1};

P
[{θ �= 1} | X] = p2 + · · · + pn

1 − α1p1
1{X=0} + 0 · 1{X=1};

P
[{θ = j} | X] = pj

1 − α1p1
1{X=0} + 0 · 1{X=1} for j ≥ 2.

SIGMA: It’s clear: identified as well as unidentified parameters are updated!
TEACHER: Yes, but the question is the following: when we update unidentified
parameters, do we learn something different from what we learn from the updating
of the identified parameter?
ALPHA: If I correctly understand your question, you suggest that what we learn
about unidentified parameters in not more than what we learn about the identified
one: is it correct?
TEACHER: Yes, it is. Let us consider the general Bayesian model �(X,θ). We
know that the Bayesian identified parameter θmin ⊂ θ always exists and satisfies
X ⊥⊥ θ | θmin. Hence, if ψ ⊂ θ , and we suppose that we are interested in ψ , then

E
[
f (ψ) | X] = E

[
E

[
f (ψ) | X,θmin

] | X]
= E

[
E

[
f (ψ) | θmin

] | X]
for all measurable positive function f . Thus, when we update ψ , we only update a
function of θmin ⊂ θ ! By the way, this general result is also remarked by Wechsler,
Izbicki and Esteves (2013):
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Table 2 Reduced Bayesian model

{X = 0} {X = 1}
{θ = 1} (1 − α1)p1 α1p1
{θ �= 1} p2 + · · · + pn 0

“Information about θ is partial and comes only through the medium of learning about
g(θ)” (p. 91);

here, g(θ) corresponds to the minimal sufficient parameter. Before discussing this
statement, let see the details in the example under analysis.
ALPHA: We can apply the general argument to our simple example: for j =
2,3, . . . , n,

P [θ = j | X = 0] = E
[
1{θ=j} | {X = 0}]

= E
{
E

[
1{θ=j} | {X = 0}, {θ = 1}, {θ �= 1}]{X = 0}}

= E
{
E

[
1{θ=j} | {θ = 1}, {θ �= 1}] | {X = 0}}.

But

P
[
θ = j | {θ = 1}, {θ �= 1}] = P [θ = j | θ = 1]1{θ=1} + P [θ = j | θ �= 1]1{θ �=1}

= 0 · 1{θ=1} + pj

1 − p1
1{θ �=1}.

Therefore,

P [θ = j | X = 0] = E

[
pj

1 − p1
1{θ �=1} | X = 0

]
= pj

1 − p1
P [θ �= 1 | X = 0].

TAU: This type of statements should be complemented by a remark previously
done by the Teacher, namely that the original Bayesian model can be replaced by
a reduced model without losing relevant information. Accordingly, I can reduce
our original Bayesian model to one which only includes the identified parameters.
By doing so, we avoid redundant information! The original Bayesian model can,
therefore, be reduced to the Table 2.

Let me emphasize: this reduction can be done without losing relevant informa-
tion, as widely explained earlier (see page 356) . . . because the Bayesian identi-
fied parameter is the minimal sufficient parameter. Consequently, the likelihood
is exhaustively described by the minimal sufficient parameter, and the learning-
by-observing process is fully concentrated on the minimal sufficient parameter in
the sense that, conditionally on it, there is nothing more to learn on {θ = j} for
j = 2, . . . , n. Moreover, the posterior probability of the unidentified parameters
are less than the posterior probability of the identified ones: for each j = 2, . . . , n,

P [θ = j | X = 0] < P [θ �= 1 | X = 0], P [θ = j | X = 1] < P [θ �= 1 | X = 1].



364 E. San Martín

In other words, it is more informative the posterior distribution of an identified
parameter than that of the unidentified parameter.
ALPHA: The reduced Bayesian model is now defined on the product space({1, . . . , n} × {0,1},A⊗ S,�

)
,

where

• A = {∅, {θ = 1}, {θ �= 1},�};
• S = {∅, {X = 0}, {X = 1}, {0,1}};
• and � is the matrix that Alpha computed.

In this model, the events

{θ = j}, j = 2,3, . . . , n

are not measurable and, consequently, they don’t provide information on the ob-
servations are not informative: all the relevant information regarding the data is
in θmin.

6 The statistical meaning of identified parameters

TEACHER: It is time to discuss about the statistical meaning of the identified pa-
rameters. The objective of this session was to formalize the claims according to
which identified parameters can only be supported by the observations through the
data generating process. The concept of Bayesian identification actually allows us
to precise this statement. Who can explain it?
TAU: In a Bayesian model, the minimal sufficient parameter is given by σ {E[s |
A] : s ∈ [S]+}. Now, a Bayesian model is identified if

A = σ
{
E[s | A] : s ∈ [S]+}

,

which means that the parameters are measurable functions of sampling expecta-
tions. These expectations fully describe the data generating process, so the statis-
tical meaning of the identified parameter is supported by the observations.
ALPHA: This was just what we done when we characterized the minimal sufficient
parameter of Wechsler, Izbicki and Esteves’s (2013) example:

σ
{
P [X = x | θ ] : x ∈ {0,1}} = {

∅, {θ = 1}, {θ �= 1},�}
.

This equality means that

1. The sampling probabilities are measurable with respect to {∅, {θ = 1}, {θ �=
1},�}.

2. The parameters {θ = 1} and {θ �= 1} can therefore be expressed as functions of
the sampling distributions—in other words, the sampling distributions provide
information on {θ = 1} and {θ �= 1}. This is valid in the original Bayesian model
(Table 1) as well as in the reduced Bayesian model (Table 2).
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3. The parameters {θ = j} for j = 2,3, . . . , n can not be supported by the obser-
vations because such parameters are not measurable with respect to the σ -field
of the parameter space in the reduced Bayesian model.

TEACHER: Who can explicitly write the functions linking the identified parameters
to the sampling distributions?
SIGMA: Well, let me define the functions Y0 and Y1 as follows:

P [X = 0 | θ ] = (1 − α1)1{θ=1} + 1{θ �=1} .= Y0,

P [X = 1 | θ ] = α11{θ=1} + 0 · 1{θ �=1} .= Y1.

Therefore,

{θ = 1} = Y−1
0

[{1 − α1}] ∩ Y−1
1

[{α1}], {θ �= 1} = Y−1
0

[{1}] ∩ Y−1
1

[{0}].
TEACHER: These fundamental equalities show in which sense the data generating
process provides information leading to state the statistical meaning of the param-
eters. As it was pointed out by Alpha, these equalities can also be derived from the
original Bayesian model and, therefore, the parameters {θ = j} for j = 2, . . . , n

can no be expressed as functions of the sampling distributions. Using these rela-
tionships, who can exploit the statistical meaning of the parameters?
ALPHA: The parameter {θ = 1} that the plain is in region 1, provides the same
information as the probability of finding it and of not finding it there. The param-
eter {θ �= 1} that the plain is not in region 1 provides the same information as the
probability of finding and of no finding the plain in a region different from 1.
TEACHER: These considerations show that, although it seems possible to make
inferences on unidentified parameters, such inferences do not provide any new
insight because the statistical meaning of unidentified parameters is not supported
by the observations. Thus, Lindley’s (1971) claim is not correct: identifiability
matters for Bayesian model construction.

7 Where does the problem of identification come from?

At the end of the session, the Teacher considers the role of identifiability in the
formulation of scientific statements, which leads him to consider the source of an
identification problem: In 1949, the great psychologist Piaget published a treatise
on logic with a double objective: to provide a basic text on modern logic to non
specialist readers; and to develop specific piagetian theses dealing with structures
of sets and with reversibility of deductive operations. These tools were widely used
by Piaget to explain the cognitive development of child and adolescents. One year
later, the logician Beth published a book review on Piaget’s treatise: the review
was extremely critical as Beth (1950b) pointed out the failures and gaps in Piaget’s
treatise.
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7.1 Definitions by abstraction

Among the gaps, Beth (1950b) mentions the definitions by abstraction. This type
of definitions play an important role in the formation of concepts in modern math-
ematics. Let us start by discussing them [adapted from Beth (1950a, 1965)]. Sup-
pose that a class S and a relation R, defined for the elements of S, are given.
We assume that the relation R is an equivalence relation; that is, R is reflexive,
symmetric and transitive. Let u ∈ S be an arbitrary element. Then we let corre-
spond to u the class C(u) (typically called equivalence class), which is composed
of all elements v ∈ S such that vRu. The equivalence relation R accordingly de-
termines an exhaustive classification of the elements of S in the sense that the
family {C(u) : u ∈ S} defines a partition of S, that is,

(i) Each element x ∈S belong to exactly one class C(x).
(ii) For all x, y ∈ S, C(x) ∩ C(y) =∅ if and only if x �= y.

(iii)
⋃

x∈S C(x) = S.

The equivalence classes {C(u) : u ∈ S} constitute a new type of objects in S

that were derived from the original objects u in S by means of a definition by
abstraction related to the equivalence relation R. This procedure, that is related to
Aristotle’s theory of abstraction, allows us to say that a proper name has a prop-
erty (Lorenzen (1969), Chapter 1) and, consequently, to formulate specific scien-
tific statements. For more details on definitions by abstraction, see also Lorenzen
(1987), Chapters 5 and Kim (2011).

7.2 Examples of definitions by abstraction

The most significant physical and mathematical concepts are likewise obtained in
accordance with the scheme of definitions by abstraction, mainly those related to
the process of measurement (Weyl (1949), pp. 10–11). In order to understand the
scope of definitions by abstraction, let us consider a concrete example. Let S be
the class of all sticks, slats, staffs, beams, masts and similar elongated objects; we
wish to introduce the concept of length into this class.

(I) In accordance with Aristotle’s theory of abstraction, one would say: let u be
an arbitrary element of the class S (thus a stick, slat, staff, . . . ). Now we
disregard the thickness, color, weight, material . . . of u. Then we obtain an
abstract object (u) that has but one characteristic property remaining. This
property is designated as the length of u.

(II) On the basis of the method of definition by abstraction we say: let R be the
relation equally long; this relation is defined in the class S and it fulfils the
properties of an equivalence relation. Let u again be an arbitrary object of S.
Then the above class C(u) will consist of all objects which are just as long
as u.
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In this way we define the length of u as the class C(u); it follows that the length of
u is the same as the length of v if and only if u is just as long as v.

As it was mentioned above, several mathematical objects are constructed
through definitions by abstraction: for the integers and rational numbers, see
Landau (1976) and Waismann (2003), Chapters 4 and 5; for examples in physics,
see Weyl (1949), Part II, Chapter II.

7.3 Definitions by abstraction and identifiability

Let us consider a statistical model E given by E = {(S,S),P θ : θ ∈ �}. In the
parameter space �, we say that θ1 and θ2 are observationally equivalent, which is
denoted as θ1 ∼ θ2, if and only if P θ1 = P θ2 . The binary relation ∼ is actually an
equivalence relation and, therefore, induces a partition on the parameter space �.
The elements of the partition are the equivalent classes C(θ) = {θ ′ ∈ � : P θ = P θ ′ }
of observationally equivalent parameters.

C(θ) are the new objects defined by abstraction: we disregard the parameters
associated to the sampling probabilities, obtaining thus a fully description of the
observations through a probability distribution. Taking into account the equiva-
lence between observations and sampling probabilities (see 350), each object C(θ)

corresponds to a specific set of data, nothing more. However, when we impose
identifiability, these abstract objects—sampling probabilities—reduce to parame-
ters because in such a case C(θ) = {θ} for all θ ∈ �. In other words, the corre-
sponding quotient space �/ ∼ reduces to the trivial partition of �. Thus, a set of
data is fully characterized by those parameters through functionals of the sampling
distributions. In this way, the parameters acquire a new status: the parameters are
specific characteristics of the data.

7.4 The identification problem: A consequence of the construction of a
Bayesian model

The construction of a Bayesian model inherently involves an identification prob-
lem. As a matter of fact, in Section 2, we introduce the notion of statistical model as
the triplet E = {(S,S),P θ : θ ∈ �}, where the sample space (S,S) is a measurable
space, P θ is the so-called sampling probability defined on the sample space, θ is
a parameter and � is the parameter space. In order to construct a Bayesian model,
we first endow the parameter space � with a σ -field A in such a way that P θ be-
comes a transition probability, that is, P θ(•) is a probability measure on (S,S) for
all θ ∈ �, and P •(X) is A-measurable for all X ∈ S as a function of θ . If on the
measurable space (�,A), we define a probability measure μ (the so-called prior
distribution), then, by Proposition III-2-1 in Neveu (1964), there exists a unique
probability measure � defined on the product space (� × S,A⊗ S) such that

�(E × X) =
∫
θ∈E

P θ(X)μ(dθ), E ∈A,X ∈ S. (7.1)
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In this way, we obtain a Bayesian model given by the probability space (� ×
S,A⊗ S,�).

From a modeling perspective, once A is defined, it is defined on what parame-
ters the interest is focused. Nevertheless, the choice of A is not unique: it is enough
that A contains the smallest σ -field that makes the mapping θ �−→ P θ(X), X ∈ S ,
measurable. Such a smallest σ -field is characterized as follows: for each X ∈ S
fixed, [P •(X)]−1(B[0,1]), where B[0,1] is the Borel σ -field on [0,1], is the smallest
σ -field that makes measurable the mapping θ �−→ P θ(X). Therefore, the smallest
σ -field that makes the mapping θ �−→ P θ(X) measurable for all X ∈ S is given
by ∨

X∈S

[
P •(X)

]−1
(B[0,1]). (7.2)

Now, when both the parameter space and the sample space are Borel spaces, it
can be proved that ∨

X∈S

[
P •(X)

]−1
(B[0,1]) = {{θ} : θ ∈ �

}; (7.3)

for a proof and a more general statement, see Florens, Mouchart and Rolin (1990),
Theorem 4.6.18. The reader can recognize that the right side component of equal-
ity (7.3) corresponds to the quotient space �/ ∼ under identifiability. Thus, there
exists one and only one choice of the σ -field A that is compatible with identifiabil-
ity. Furthermore, it can be verified that the σ -field (7.2) is related to the minimal
sufficient parameter up to the prior null sets; that is,∨

X∈S

[
P •(X)

]−1
(B[0,1])

μ = σ
{
E[s | A] : s ∈ [S]+}

, (7.4)

where the upper line denotes the completion of a σ -field with the null sets of the
parameter space with respect to the prior distribution μ; for a proof, see Florens,
Mouchart and Rolin (1990), Theorem 4.4.12. This last equality shows that the role
of the prior distribution in obtaining identifiability is through the 0/1-prior null sets
only. In the context of Wechsler, Izbicki and Esteves’s (2013) example, the prior
null sets are {∅,�} only. Therefore, equality (5.1) corresponds to both (7.2) and
(7.4), showing that the arguments developed above are examples of a large theory.

Summarizing, the identification problem is related to the specification of the
sampling transitions [as already pointed out by Kadane (1974)], in particular to
the information provided by the parameters of the model. The problem is overcame
when the parameters are endowed with a data-based meaning: this is an effort to
be performed by statisticians in collaboration with scientists of different fields. In
this respect, Koopmans and Reiersøl (1950)’s words seem to be a relevant ethical
requirement:

Scientific honesty demands that the specification of a model be based on prior knowl-
edge of the phenomenon studied and possibly on criteria of simplicity, but not on the
desire for identifiability of characteristics in which the researcher happens to be inter-
ested (pp. 169–170).
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Appendix: The measurabiliy structure underlying the Bayes’ theorem

The objective of this Appendix (adapted from Mouchart (1976)) is twofold: On
the one hand, to show that the existence of the posterior probability distribution is
not related to (un-)identifiability problems, but to measurability conditions only;
on the other hand, to show under which conditions it is still possible to obtain a
posterior probability distribution when the prior measure is improper.

A.1 Proper prior case

Let us consider the statistical model E introduced in Section 7.4. This model is
said to be dominated if there exists a σ -finite measure m defined on (S,S) such
that P θ � m for all θ ∈ �—that is, for each θ ∈ �, P θ is absolutely continuous
with respect to m. By the Radon–Nikodym theorem, this condition is equivalent to
the following one: for each θ ∈ �, P θ can be represented by a density with respect
to m, i.e., for all θ ∈ �, there exists a S-measurable function l(• | θ) unique up to
an m-equivalence such that

(∀X ∈ S) P θ (X) =
∫
ω∈X

l(ω | θ)m(dω). (A.1)

We choose a particular version l(ω | θ) ∈ dP θ

dm
and l(ω | θ) corresponds to the

likelihood function.
As it was discussed in Section 7.4, the parameter space � is endowed with

a σ -field A in such a way that P θ becomes a transition probability. Once a prior
probability μ is defined on the measurable space (�,A), we obtained a probability
measure � defined on the product space (� × S,A⊗ S), which is given by (7.1).
We write � = P θ ⊗ μ.

The probability � allows us to define a predictive probability P on (S,S) in
the following way:

P(X) = �(X × �) =
∫
θ∈�

P θ(X)μ(dθ), X ∈ S. (A.2)

If we want to endow the Bayesian model (� × S,A⊗ S,�) with a dominated
structure, it seems to be enough to use (A.1). However, as we pointed out in Sec-
tion 4, it should be ensured that the likelihood function l(ω | θ) is measurable not
only with respect to S (which is guaranteed by the dominance of P θ with respect
to m for all θ ∈ �), but also with respect to A:

l(ω | θ) is (A⊗ S)-measurable. (A.3)

If the sample space (S,S) is separable, then condition (A.3) holds; for a proof,
see Doob (1953) and Rolin (2007). Under condition (A.3), (A.1) and (7.1) can be
combined, obtaining thus

�(E × X) =
∫
θ∈E

∫
ω∈X

l(ω | θ)m(dω)μ(dθ), E ∈ A,X ∈ S. (A.4)
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In fact, condition (A.3) ensures that the likelihood function l(ω | θ) can be inte-
grated with respect to both ω and θ . Moreover, by Fubini’s theorem and condition
(A.3), we may reverse the order of integration in (A.4), in particular (A.2) may be
rewritten as

P(X) =
∫
ω∈X

∫
θ∈�

l(ω | θ)μ(dθ)m(dω) X ∈ S. (A.5)

It follows that P � m and, therefore, we may now define a Radon–Nikodym
derivative of P with respect to m and choose the following version:

g(ω)
.=

∫
θ∈�

l(ω | θ)μ(dθ) ∈ dP

dm
. (A.6)

This derivative is called a predictive density. Note that for any fixed C ∈ A,
�(C×•) is a finite measure on the sample space (S,S). Moreover, �(C×•) � P

and, therefore, we can define for every C ∈ A a Radon–Nikodym derivative
μ(C | ω):

μ(C | ω) ∈ d�(C × •)
dP

, C ∈ A. (A.7)

But from (A.4) it follows that∫
θ∈C

l(ω | θ)μ(dθ) ∈ d�(C × •)

dm
, C ∈ A. (A.8)

We can therefore choose the following version of (A.7):

μ(C | ω) ∈ d�(C × •)
dm

/dP

dm
(A.9)

=
∫
θ∈C l(ω | θ)μ(dθ)∫
θ∈� l(ω | θ)μ(dθ)

= 1

g(ω)

∫
θ∈C

l(ω | θ)μ(dθ).

We conclude that for ω fixed, μ(• | ω) is a probability on (�,A); it is called
posterior probability. When g(ω) = 0, μ(C | ω) will arbitrarily be putted equal
to 0 for all C ∈ A. Finally, note that from (A.7), we deduce that μ(• | ω) � μ:
a priori null sets are still a posteriori null sets.

Note that, in (A.9), μ(• | ω) is chosen so as to be a transition probability on
(A × S). The probability � defined on (� × S,A ⊗ S) and constructed as � =
P θ ⊗ μ has therefore been decomposed as

�(E × X) =
∫
ω∈X

μ(E | ω)P (dω), E ∈ A,X ∈ S. (A.10)

When the prior probability μ is defined through a prior density p(θ) with
respect to a σ -finite measure ν on (�,A), we may write the posterior density
p(θ | ω) with respect to ν as

p(θ | ω) = l(ω | θ)p(θ)∫
θ∈� l(ω | θ)p(θ)ν(dθ)

= l(ω | θ)p(θ)

g(ω)
∈ dμ(• | ω)

dν
. (A.11)

This is essentially the well-known form of Bayes’ theorem.
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A.2 Improper prior case

The previous analysis can be extended to the case where the prior μ is an un-
bounded measure (or improper distribution) instead of a probability. More specifi-
cally, let μ be a positive σ -finite measure on (�,A) instead of a probability mea-
sure; it is called a prior measure.

Repeating Neveu’s argument on each element of a countable partition of �

whose elements have finite μ-measure, we ensure the existence of a unique mea-
sure � defined on (� × S,A⊗ S) such that (7.1) holds. This measure is positive
and σ -finite. Furthermore, under the measurability condition (A.3), the measure �

can be written as in (A.4). Again a predictive measure can be defined as in (A.2).
However, this measure will not necessarily be σ -finite. We have then to distinguish
two cases:

1. Case 1: The predictive measure is σ -finite. In this case, the Radon–Nikodym
derivative at the right hand-side of (A.7) is well defined and the predictive den-
sity, defined by (A.6), is m-a.e. finite so that the right-hand of (A.9) is again
well defined and μ(� | ω) will always be equal to 1. Summarizing, when the
predictive measure is σ -finite, the Bayesian inference can still be constructed
in the same way as when the prior measure is, in fact, a probability. In this case,
the posterior result will be a posterior probability.

2. Case 2: The predictive measure is not σ -finite. In this case, the derivation in
(A.7) is not warranted (because the Radon–Nikodym theorem can not be ap-
plied) and the predictive density defined in (A.6) will not be m-a.e. finite. It
is therefore impossible to decompose � as in (A.10). However, (A.7) remains
valid and the right-hand side of (A.7) defines a transition measure on S × A:
this measure will be infinite when g(ω) is infinite. However, its utility in a
Bayesian framework is questionable because it is not a decomposition with re-
spect to P . Moreover, it is determined only u to a multiplicative constant which
corresponds to the choice of a specific dominating measure m on the family of
sampling probabilities; this constant depends on the observed ω.
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