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INTRODUCTION 
• 

The deliberations contained in this report refer to an 

analysis carried into effect with a view to determining whether 

the periodic speed limits introduced in 1961-64 may in any way be 

shown to have affected the traffic accident statistics in Denmark. 

The results of the mentioned analysis are set forth in (4). As 

basic material for the analysis was used the number of motor ve-

hicle accidents involving personal injury, distributed on certain 

dates throughout the years under review, and also on road types. 

By road type is meant that the overall Danish road network was sub-

divided according; to the classification of the respective roads 

(trunk roads, highways, secondary roads), the cross-section of the 

partic'ilar road (the width and number of lanes), and the character 

of the marginal developments. 

Reference is also made in this report to an official 

Swedish report on the same subject (5). 



1. The Multi211221ive Poisson Law 

The above law was first used in connection with an evaluation 

of related attainment tests in oral reading but has proved fruitful 

since then in different other fields. 

It is applied in an effort simultaneously to describe simple 

structural correlations and stochastic variations of positive in-

tegers (>0), divided according to two different but intersecting 
criteria. In respect of the problem discussed in this report let 

us imagine that the time (t) intersects the road type (1), the ob- . 
 servation ait being the number of accidents of a given type (in the 

case at issue, motor vehicle accidents causing personal injury). 

Primaidly, an attempt is made to consider the accident flow 

an elementary stochastic process with the parameter A it , which in 

the given situation - the intensity of the process on the section 

of the road network under investigation, integrated over the period 

of time, e.e. 24 hours, denoted by t - . ill some way or other is de-

termined by the combination of i and t: 

alt 

-p it it 	it p(a. 1 r. e 	• it 	 a. it 

The decisive point is, however, that it is considered possible to 

• describe this interdependency as the product of two factors, one 

of which, F, ; , characterizes i (the road type) at any time, while 

the second one, n t' 6haracterizes t (the "point" in time) irrespec-

tive of road type: 

(1.2) 	it 	din t • 

Equations (1.1) and (1.2) arc definitions of the Multiplica-

tive Poisson Law. Concerning the theory underlying this distribu-

tion and the various modes of application the reader is mainly re•

ferred to (1), Chart. II, III, VIII and IX and to (2), Malingsmo-

deir 1, pep. 1-11. With a view to adapting important results of 

a more recent date (3) to our purposes, we shall, however, first 

set frrth seccial formulation of a wellknown theorem on Foieson 

distriticn (1), pp. 129-100, follow?r1 by its converse, viz.: 
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Theorem 1: If the stochastically independent  variables  a 
and b are  Poisson distributed, with the parameters aE and  PE the 
sum  of these variables  

(1.3) 	c = a+b 

will  be Poisson distributed  with amettrE,and the 

distributiOn of a and b conditional on  a constant sum c will be 

binomial and will have the parameters c and a  -- 

(1.4) pfaicl = ( c ) 	°)  
a  (a+3 )c 

The first part of this theorem is the addition formAa for 

the Poisson distribution and derives immediately from the fact 

that a summetion over a+b = c of 

p(a,b) = e4(a")  4 • 1— c. 	a!
2b! 	as S

h 

e F,(a+0) E c  pfcl 	- 	--r • (a+a) c  . 

Thereafter, the conditional distribution (1.4) is arrived at 

by div i ding (1.6) into the simultaneous distribution (1.5). 

The converse of Theorem 3, which may be ascribed lo 

Chatterji (3), reads as follows: 

Theorem 2: If the distribution of the stochastic,711y  :ndc!- 

Dondent variables a and b, conditioned by their sum c is bir_cr- . al 

(1.4) with the same  probabilistiq_parameter  for aayinIe7r vciw 

> 0, th - n the n7rginal  distributions  of a b, and c w.11 fellow 

the Poisson Law in ovLryirlagin ,22aLitultion,  with p,Jr. a7cten,-  of 

11-1 fcr7 CIF and (ci- i r 2- • 1._ .11= 
• 

s; -73ti 



The proof is ?endu ted through an examination of which di-

stribution laws p{a} and p{b} have the mean value and the variance 

of the conditional distribution p{a,blc) in common with (1.4). As 

an instrument we use probability generating functions 

(1.7) 	"Ix} 	
p{a} xa 

As will be known, these functions are subject to the follow-

ing rules: 

If a and b are stochastically independent, 

(1.8) R( a,b ) = Tif a ITI{b} 
x,y 	x y 

Irrespective whether a and b are stochastically independent, 

the generating function for their sum will be 

(1.9) iabl 	nra:51 
x 	" l x ,x 1  

The 11,enerating functions for the conditional probabilities 

p(a,ble), c=a+b may be obtained by• expanding R(xz,  ' b , ) with respect yz 
to powers of z since 

(1.1(2' xy 
a,b 

zi 
 . En( a,

,y
i e} ooze , 

. 	x 

the lift hen 6 side of this equation having the form of (1.8). 

If we now differentiate 

(1.11) ric
xzy 

nfb 
z 
 . En( a,b le) pfelze   x,y 

in rspeet of x and thereafter make x = y = 1, we will have 

al ( ab le) 
(1.12) 	 = ;if  • 

yieldinc also 

( 1. 13) '{a- 	,b 	a 	 c 	Cl 	Ire, . fl 	
, 

t z 	
= 	Eep(clz 	= 	z11-1 J 

a+6 	 a+B 	z 

ax x=y=1 



When conlind 	(„ 1 :9) te result is 

(1 .14 ) 

a at( z ) t{ C }  a 
a 	a+0 	.c ni) n( z )  

which by _ntegration gives 
a 

z ' 
Ane,1 -, -ru' to the above 

11 , {d 	e 	fl(} 
(1.14a) b 	a+a 

a + a 
(3.15;) 	nf z i = 

Sltbscquently (1.11) is differentiated in respect of both x 
an y pric:r to making them = 1. This means that 

; 2 nf a,b irl  

(1.1S) 	 x,7  
;X 3v x=y=1 

.:{he} - :l{alc} 	• 

 

ari 
c(c-1) 

since 

=ac-$ )(b 	t3c  ) 1 c} a4 

(1 1 7) ac 	 a 	Ni = 4;e((a-  0. (1 

a$ !c) 	 (-• 	. 
(a+8) 2  

CrnS(oc -It1y )  

= z 2 atif C )  ute (1.18) 2 	a z 	VC) = 
(a+a)

2 



0.(z -1) 
•e  

0 
a+0 ▪ e 

-1 ) 

and through division by 11{ 7 }and utilization of (I 14) and (1.14a) 
we arl'ive at 

(1.19) 

2 
0 1 {} = 	Z 

n{
C 
 } 	n{ z ) 

which in the first instance is integrated to • 

(1.20) 

where 

(1.21) 

c logllq} 	legA t  ( z ) 	logo 

el 

Taking the antilogarithm of (1.20), and integrating a second time, 

we obtain 

(1.22) 
	

ri c I 	e Ll 
 z - 1 ) 

• 

Consequently, in accordance with (1.15) and (1.15a) 

either of which gives a specific Poisson'distribution. That the 

conditional distribution pfalc) is (1.4) may be inferred from The-

orem 1. 

If considering this result as an isolated case, no special 

irpoltance may be attached to the fact that the parameters have 

one factor p in common, but when taking into consideration that 

this reascninF applies to every single t (the date), and that the 

1,tsic assun,ptioL is that the conditional distributions (1.4) hove 

the sre paremeter, viz.a+15  and TT, respectively, for any possible 

t, tl'en p becomes a paranet.,:r which may vary at random with t, but 

now it is really a question of a decomposition of the Poisson pa:ra-

m.:tean, one factor is +  varying with the time but commcn to the tw,) 



6 road types, while the second one, a  and 7;3 , is indspenlent of n'o 
tne time but specific for the road type. 

The reasoning may be directly generalized to mcre tIan two 

road types. if a l , 	ak'  with the sum c, denote independent 

Poison distributed variables, (1.4) is replaced by the po4nomial 

distribution 

c 	Eel... qk  
(1.23) 	pCa l , 	 s k Ic) = (al,...,ak) —1— c ' 

n. 	k* 

and based upon this formula the converse of the above theorem may 

be proved, e..g: by means of the binomial distrii:Aitions applyilg 

to any a.1  and c-a . . 

5 2. Lequirements for x 2 -tests for a comparison of cccident 
	011...141■■■••••■••••■■••••■•■ 	  

distributions according to road type 

By means of the converse theorem for the Polyromial Law .t 

is possible oo throw.light on the requirerents for 4 valid eolTari-

son to be nano between the distributions of specific tyre of ac-

cidents on verioussegments of the road network. 

So far no investigations have been made to dRtermine whelher 

the distribution of accidents involving seveze personal injuric 

according to dates and road types follows thi: multiplicative 

Poisson law as is the cane with accidents involvinF minor persclal 

injuries. Ihe Swedish report (5) on the 19E1/62 investigations, 

howvcr, gi‘es the distribution cry road types during periods 

and witliout introduction of speed limits. 	statistici.l, tests 

wen pL 	in support of the differerice claimed to mist wh:n 

comp„:ring tre two distributions, but a x 2 -te5t would seem to be in-

dicated and would answer the question whether, from a theo:etic,1 

point of view, the distribution might possilly be the same or the 

two poriods. Now both mati?rials suffer fro ►  a high degree 	in 

',loth as regards external traffic conditions and th e  

;lumber of accidents. This in itself actually does !)t Eli- 

tho Itcssi)nility of attaching any siglificance to the x - te..A. 
In t!- ls nr.n.nection, however, it would seem to he an -20olute 

thal the distribution on roed types must be stable for (ozh 



specific 'Doriod regardless of the wide differences in external con-

ditions and absolute figures. In accordance with the converse the-

orem of :hre multiplicative Poisson law this would, however, be 

tan .:amount to accepting the validity of the latter theorem, which, 

in fact, has not been determined. Data in support of such validity 

are, however, to be found in Tables 1-3 of the report. 

The situation is exactly the same in respect cf fatal a-ci-

dents, but within this category no data of a corresponding nature 

ha.,,e been published. The tables merely show the number of persons - 

killed, quite a different matter than the number of fatal accidents. 

§ 3. The Pascal-Polva Distribution 

In (4, B § 5) we were led to the question whether it may be 

thought possible for two stochastically independent variables a and 

b to follow such distributions that the conditional distribution of 

(a,b) for the given sum 

(3.1) 	c = a+b • 

nay have a mean and a variance of the respective forms 

(3.2) 

anc 

(3.3) 

Aalc) = ce 

= c0(1-e) • 1±.9- 	Y 	0 • '1+1 

Like in § 1, this question is examined by means of generating 

functions, using as basis, in particular, the equation (1.11): 

(3. 1, ) 
	n{ axz } nf yz  r = znf a ' ll 	p(c)z c  . 

By ei.fferentiation in respect of x and by making x = y 7  1 we arrive, 

111::' in J 1, at 

, .11 1 {!} n't z
c  

e  n{ z } 
(3.5) 



analogous to which 

	

n {b} 	 nlici 
1 Z I  (3.5a) 	 = (1-9) • ----- ' 

	

b 1 	 11( z  } 

from which it follows that 

• 

(3.6) 

and 

(3,6a) 	n 

= c e 

1-8 
= ( { 

Subsequently, differentiation is made in respect of both x 

and y before assigning to them the value of = 1. Instead of (1.18) 

we will new have 

(3.7) 	z2 n'{} n'{ b } = + l e(1-e)z 2 	. 

Throu7h division by :1.. 2 11{7} 1  and applying (1.8) as well as (3.5) and 

(3.5a), we obtain 

% " r e, 2 	 C niff 1 0 11 
	- 	'Z' (3.8) 	A:-- ..;,._) : 	. 

	

nr c l 	TT/ 

	

''' 	
i.".C1 
ut z /  

with the solution 

(3.9) t, 	1,C 47 	t z } - logo) = logr{ z } $ 

the inte?ration constant of which is 

(3.10) 	logo 	logn'(} = logJqc} . 

. After carrangement to 

n'() 
1+1-1 

,, z ,, 

tic eouaticn i s. i:Itegre.ted to 

(1.11) 	 (1- 



whicil 'Lased on 	.6) and (3.ba) 

(3.12) 	 = (1- 	(z•1)) -13 

 and 

(3.12a) z t (1- Li  (z-1)) -8  . 

This, however, only serves to prove that if any such distri-

butions of a and b exist that the mean and variance of the condi-

tional probability of (a,b) at a given c = a+b are the same as (3.2) 

and (3.3), respectively, then their generating functions must be of 

the forms (3.12) and (3.12a). 

This, however, does not even prove that these functions pro-

duce any probabilistic distributions at all. That this naverthe-

less is the fact may be concluded, though, from noting that the co-

efficii:nts of the powers of z in the expansion of 

(3.13) a 
z 1 = (1--2- z) -ø  • ( 

4-41 	 Y+1.1 

are positive: 

(3.14) -- p{alui -} = (-1) a  ( a') • Xa)
a 

• (-1,-) ct  
Y+11 	031 2  

and by analogy 

(3.14a) piblB, 12 ) = (-1) b  ( B ) (-1-) 
D 	Y+11 

)° Y+J 

Further,:tore, in accordance with (3.11) 

(3.15) PfelYs IL/ = (-1) c  ( -Y ) (-1-) c  ( 	) Y  y+u 	ri u  

and from the above three distributions the conditional distribution 

of (a,b), given the sum a+b 	c, is then found to be 

( aø )(-1) b  ( 8 ) 

(•1) 	(;)') 

(0,a+a)_1(1 2 6+b) • c!  
a! 	b! 	(Y,Y+C) 

(3.16) pfa,bla,0, 	= 



which is independent of the parameter. 

A variant of the distribution type (3.14) was first given by 

Pascal in a form which formed a contrast to the binomial distribu-

tion, Polya's name is also identified with this type of distribu-

tion, but more or less as an extension of the Poisson distribution, 

the parameter A of which was considered to be a stochastic vari-

able follcwing a y distribution. We will, therefore, call it the 

Pascal-Polya distribution and point out that if letting s+e while 

u and 8 are kept constant, the Poisson distribution is obtained 
1 

as a bcre:lerline case. 

The internretation of the parameters in the distributions 

thus developed requires a certain :mount of deliberation. 

which is the mean of c, may vary according to time (ciay-

week number), ,,.hi  1e a, e and y as parameters in the coriditionel 

mean and verianc• are 	to be constant. To elucidate their 

interrelationship we point cut that the variables a and b refer to 

two specific years, i and j; instead of a and a we therefore now 
write a.end 1. y is then a parameter which is characteristic of - 
the pair  (i,j). Our argumentation in the foregoing has been based 

on the assumption that y need be constant only as long as this same 

pair is being maintained, while it may easily change when we change 

over to e -:ifferent 2-year period or to ether periods within the 

same two years. y is, therefore, denoted as yij . 

We new revert to p, which as mentioned may vary according to 

the 	 number t but may also very well be affected by the 

pair Ci,]). Provisionally, therefore, . we write u ijt  instead of 

u t , and firally a, b, and c are denoted more precisely as a it , 

c
t 
 = e

it 
 - b jt* 

Usilg these notations, we have 
ai t  

(3.17) 

and 

(3.1P) 

l' 4 
n{1 	) = (-1)

ca 
 lt (

-(1 	13t 	) ) ( it 
Y..13 ► ' ijt Y..  1] 

a , 	J4 	J. 	Is• 	Y. • 	a 
p{e. jt 	(-1) i t  (

a  j ) ( 	
lit 	) 	( 	11  

. 	 • - 	+ u • 	• 	 • 	+ s • • 3t 	1] 	sjt 	 lit 



from which it is derived that 

(3.19) 

and 

(3.20) 

c
t 	

a +a. c„.  -a -c . 	4 	

Y 	

11 ** 	 Y. 	 i 	3 
p{ct } = (-1) 	( 1

c 
3) ( 	

lit 	( 	11  
.-+ U. 	' 	Y--+ 11 ; 
1] 	ajt 	I ii 	-jt 

..„ 	 a. 	. 
(-1) 	( 1 ) (-1) 3t  (

-a3
) 

a4 
pid. a lc 	= 	 ait 

it' jt t 

(-1)
t 
 • 

a . 

The mean and variance of this conditional distribution are 

finally obtained by plain algebra, ,viz. 

(3.21) 

and 

(3.22) 

a.;  
{a. lc } = 	 ct  

	

it t 	a. a- l ] 

a4 a; 	 a.4.a•+c 

eIt . • lc ) A 	
t 

	

t 	(1.+_.)2 	
at 
	0.+a.+a 

-1 	
3 

What we introduced as y must, therefore, 

( 3.21 ) 	
-3 

= Q. + a,
3 
 . 

If inerting this in (3.17), we have 

ai 

	

a. 	-a. 	
a it 	1 .4 e . ) it 	1 	 '1 - 3  

) r.(-3)(a.). (
ai+Jj+qjt 

) 	(
ai+ aj 

but for general application of this fomula, i.e. for all ccmbina-

tions of j and I, the ratio 

(?.2 5 ) 

:-!-.ust1-.cincielA:ncjentofa.,and by inv,arsion of i and j it n:Ly also 

bc 	that it rust be independent of c 1. , thus being cL -1-2 ,mj ,27,t'on 

t 	 can, therefore, say that 

p.. 	7. (a +a ) ,1 
13t 	j • ( 3. 2C, ) 



This provides us with the final formulation 

(3.2 ) 
ait 

	

-a. 	n 	ait 	-a. 
r 
a. 

1N 
l+n 	(1+n t 	

1 

	

Zt 	t 

	

and al-o with those analogous for a ir 	c 

	

3t 	t* 

Fending the programming of a maximum likelihood estimation 

of the a f s - the n's being of secondary importance in this connec-

tion - a more elementary method may be adopted. 

From (3.21) describing the mean it follows that 

(3.23) a. 	E a. 
(t)  lt 

has the mean value 

(3.29) 

so that 

(3.3C) 

and tnus 

•.31) 

a . 

a.
1
+a.

3 	
C
o 

Ea. 	o 	
, 

it 	a. 	
a  

(a. 61. ) Ec 	co 	
a +a 

3. 	3 

a. 

a 

a44 
 (t) j"" 

licv (3.30) is an estimate for minimization of 

	

(a.1  -0.c )
2 	(a.it -0.c ) 2  1 t 	' 	1  

(3.32) =Z 	 + (e.-e. 
c t 	 et 	1 1 

and . 	therefre see: k the mean of this minimum. First, we ive 

( 	-0.c ) 2  

	

1 	t  ...L. 	.... 	 . 	1... 	i (3.33) 	:, t 	 T, 	 • 

	

c t 	
1(c )) = 	c t  1 "itl`t i  

y..+C... 

	

1 . 	 1--1 
et 	t 1 	1 y

ij
+1 

e -T 
= e i (1-e.) • (T + -----4- 1  

-. 	.... 	1 	 'ii 

T 
	

of s.,)cific 	in the wec k durinr th 

;:1...7.:rvatit , . 	Then 



C
o 
 • a(6 -6 i  )

2 1(Ct  )) o I(c t )1 i  

Ea. 
= C 	• •t 	

t
)1  

(3.3") . = c©  • 77 • {a it 1ct } 

	

+1 	-1 

• E e.(1-e) 	Y 	 

1
ii 	et • e

t 
Yid 13 

1 	Ect(ct-1) = e 4 (1-e i ) • (1+ 	• 	 

and finally 
• 1 -T- — E- (c -1) 

	

(a. -'4. t r.  )2 	
c 
0 	C 	''t t it 1 -   (3.3E) 	i: 	 l(r. )1= b(1-0.) . (T-1+ 	 __-____) , 	-t 	i 	 ).. + 1 

-t 	 ij 

1 
which 	directly to an estimation of 

Y 
 77.1-  with a view to 
ij 

riving at Titt" value which in the average number of cases would 

apply. Fr ...)m this an estimate is then derived as to the wlue of 

y ij , i.c. the absolute value of a i  + a j . If multiplying the esti-
mated values ef 

ct• 

+a 

	

and 0 j  = 	by• A ..aa   j 	Yi) 

we get an estimate of the absolute vale es of a i and a
j

. 

The preciseness of these estimates may be evaluated, but this 

would require further algebraic developments which at the present 

time are -impracticabli. 

5 4. The.: 	for Cong.arisc,ns 1:.wren Short Read Ec:ctions 

f:tcvmentation•set fortl, 	B 9 3) is being advaneckl in 

an iz.,.ftr: 	(!.c.mcnstrat that the multiplic.ativc Poissn law may 

be e.pplied to the correlation of time and Major sections of th:: 

road 

In t L ,:. EwcIlsh investigation in 1966 (6) on the effect of in-

1:1-:ffic control on a couple of selected roae sczments, with- 

tut 	 of ST-JCC%! 	 ts:it'. evaluation of the 1 ,czults 

lz b: •(. on. 	ccmparis-qi of cimultanertis dLta• from theso 

whih - .1%present small sections of the Swc.dih "1,:" roads, 

0 
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The question as to whether the number of accidents wee re-

duced as a result of the increased traffic control will then depend 

on the distributioL of accidents when comparing the road se:eeents 

with an0 without increased control, respectively: Was a chenge ex-

eerieread in the distribution in consequence of the increesed cen-

tral measures? 

This problem invites a traditional u or x 2 -test fcr identifi-

caticr of the distribution cf accidents on the road sections when 

cente.ring the sections with and without increased control fcr the 

two perio]s under review. 

The fact remains, hcwever, that these two periods e-e?rise 

da, 's marked by wide differences in traffic conditions, and more-

over, it is a question cf eifferert seascns cf the year so that, 

censidered as a whole, the results must he expected to vary ccnsid-

erably. 

In order to get a realistic picture when comparing the two 

types :f road zegments, the relative distribution of acci ,:.ents on 

these trio t-rees must thus be stable for each period. Accerdine to 

the Chetterji converse theorem this would, however, mean that the 

rultiplicativc Poisson law would have to hold for both periode. 

I have been considering whether it is possible, cn basis rt 

the validity of the theorem when applied to large road seseente, 

to drev the conclusion that it must hold also for the smeller seg-

ments, but to the best of my knowledge there is no tenable methe- 

matic basis for such ah argument. A final opinion rn th- publish e d 

:.1 -tteril must, therefore, be postponed pending the avail ability of 

nel - eiel stating the number of accidents per day en the reepective 

sections. 

In the absence cf any such information, the evaluation rust 

necessarily be subject to the following condition: If the multinli-

c,:.t1v•7! Poissen law holds also for smaller sections of the  

1_1d:tit - nal  test  krill  trt- vide  constructive reculte. 

a. 
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We are, however, not completely without possibilities for 

control. Information as to the number of accidents on three ether 

r -.7.ar2 sections during the two periods under review has been obtained 

from the ,:fficial statistics, and also data on the investigated 

section for the previous. year. If the multiplicative Poisson 1w 

holds for the individual days, it may also be concluded th-:t it 

will : )1d for a comparison between the two periods of time, the 

only exception being the investigated road soFment during the time 

of the investigation. 

As the theorem seems to hold well (cf. 	B S 6), the basic 

arguent must also be assumed to hold, but it would still se.m de-

sirable to obtain data per day for the respective two road sectors 

as well as total figures for the 2 x 2 months for a considerable 

number of additional road segments. 
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