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1. Introduction. 

In the publication Ell a new approach to test psychology was 
attempted. 

Traditionally the properties of a test are defined in terns of 
variations within some specified population. In practice such 
populations may be selected in various reasonable ways, and 
accordingly the properties referred to, e.g. the reliability 
coefficient, are not specific to the test itself, they may vary, 
even considerably, with the population chosen. 

Similarly the evaluation of a subject usually is, by way of a 
standardization, linked up with some population and is therefore 
not specific to the subject per se. 

The new approach aimed at developing probabilistic models, in 
the application of which the populations could be ruled out. It 
was a discovery of some mathematical significance that such models 
can at all be constructed, and it seemed remarkable that data 
collected in test psychological routine work could be fairly well 
expressed in terms of such models. 

In the paper P.] an attempt was made to build up a general frame- 
work within which the models of Cl appeared to be special cases. 
And some general properties of this general framework were recogniz-
ed. But 'only recently it has become quite clear, that the model 
(4.6) of 02.) is in fact the complete answer to the requirement 
that statements about the parameters of a discrete probabilistic 
model and about the adequacy of such a model should be objective 
in a sense to be fully specified. 

At present, at least, the theory leading to this result is rather 
involved and it is not going to be a main topic for this paper. 
However, it is intended that the following discussion of one of 
the models in ilj t viz. the model for item analysis in case of only 
2 possible answers, should demonstrate the nature of the type of 
objectivity we are aiming at, thus pointing to the more general 
problem to be treated elsewhere. 

2. Data. 
*/•.. 

The situation to be considered is as follows: 

A large number of subjects (1o94 recruits of the Danish Ari.f) were 
exposed to an intelligence test BBP, consisting of four aut,Lests, 
two of which we shall deal with: N. (numerical sequences) and F. 
(geometrical shapes to be decomposed into some or all out of five 
given parts). 
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The time allowance for solving N. was 15 minutes, such chosen that 
- according to separate experimental evidence -.almost none 
could be expected to have obtained an appreciable larger number 
of correct answers, even with unlimited time, Therefore items 
not reached were counted as not solved, as were items skipped. 
Thus each answer was recorded as correct (+) or non correct (). 
For F. the answers were recorded likewise. The time limit-will 
be discussed in section lo. 

In both subtests the items were largely arranged in order of 
increasing difficulty with a view to determining, if possible, 
the ability of each subject as a threshold. 

3. Model. 

The model to be suggested is based upon three assumptions. 

1) To each situation of a subject (no."9 ) having to solve 
an item (no. i) corresponds a probability of a correct answer 
which we shall write in the form 

' 	1)1 
d  

(3.1) 	 P14- 10 fij 	1+X
i

. 	> X —0 	. 
til 

2) The situational parameter X o.  is the product of two 
factors, 

(3.2) 

& I)  pertaining to the subject, e i  to the item. 

3) All answers are, given the parameters, stochastically 
independent. 

Each of these assumptions may call for some comments. 

re 1) For description of observations two apparently antagonistic 
types of models are available, deterministic models (such as the 
Law of Gravitation) and stochastic models (such as Mendels Laws of 
Heredity). However, the choice of one type or the other does not 
imply that the phenomena observed were causally determined or that 
they did occur by chance. 

Even if it be believed that certain phenomena can be "explained 
causally" (whatever such a phrase may mean) a stochastic model may 
at least temporarily be preferable (as in Thermodynamics). 

Accordingly, by adopting a probabilistic model for describing 
responses to an intelligence test we have taken no sides in a 
possible argument about responses being ultimately explainable 
or not in causal terms. 

X 



'e 2) In e.g. psychophysical threshold experiments a subject 
is usually exposed to the same stimulus a large number of times. 
On the assumption that the repetitions do not affect the judge-
ments of the subject this procedure gives the opportunity of 
estimating each X i  separately and hence studying directly how 

the situational parameter varies with subject and with strength 
of stimulus. And then we may or may not find the multiplicative 
rule laid down in 2). 

For the intelligence tests we shall deal with experience has 
shown that on one repetition the results are usually somewhat 
improved. A large number of repetitions have not been tried, 
mainly because the questions are such that it seems almost certain 
that several of them will easily be recognized after a certain 
number of repetitions. Therefore the possibilities for a direct 
approach would seem remote. 

To compensate we take recourse to an assumption that at any rate 
seems rather bold, possibly even artificial, namely that X. )di  

can be factorized into a subject parameter and an item parameter. 

However, combined with the two other assumptions it produces a 
model that turns out to have rather remarkable properties, some 
of which even lead to a very careful. examination of how well the 
model represents the data (cf. section 6). 

Provided the two kinds of parameters can be operationally defined 
they also have a clear meaning, to be derived from the prob-
abilities obtained by inserting (3.2) into (3.1): 

(3.3) 
1  

Of'11) 
1-Cr: E 	7 	1 ' 7— ) 	1+F E 'D i 

In fact, if the same person is given items with f i t s approaching 0 

then his probability of giving a correct answer approaches 0 while 
his probability of giving an incorrect answer tends to unity.And 
that is true for every person - provided the model holds. Similar-
ly, when E i  gets large the probability of + tends to 1 and the 

other one to O. Thus with increasing e i  the items become easier, 

so colloquially we may call E d_  "the degree of easiness" - and its 

reciprocal ,  S i  =1/c t "the degree of difficulty" - of item i. 

On the other hand, giving the same item to persons with F. 0 's 

approaching 0 we get probabilities of correct answers tending to 
0 and if &i)  increases indefinitely the probability tends to 1. 

And this holds for every item. Thus we may colloquially mern Lon 
& I)  as "the ability of subject)) " - with respect to the kind. pf 

items in question. 

In the definition of F, D  and E
i 

there is an inherent indeterminacy. 

In fact, if y , 1)= 	n and E i , i = 1,...,k is a set of 

solutions to the equations 

E = k 1.) . 	)..)1 (3.4) 



then, if C I.) , ei is another set of solutions, the relation 

(3. 5) 
	

;ci 

must hold for any combination of v and i. 

Thus 

(3.6) 

must be a constant, a say, and accordingly the general solution is 

(3.7) 
	

ac v , ci = 	a>o arbitrary . 

The indeterminacy may be removed by the choice of one of the items, 
say i = o, as the standard. item  having "a unit of easiness", in 
multiples of which the degrees of easinesses of the other items 
are expressed. 

By this choice - or an equivalent one - the whole set of C;s and 
e i 's is fixed. 

In particular 

(3.8) 

i.e. the parameter of a subject is a very simple function of 
his probability of giving a correct answer to the standard item, 
in fact 

(3. 9) 

is the "betting odds" 

p{+1v,oI  
Avo - 1 -pf+,17,c 

on a correct answer. 

Now we may be able to 
may refer to him as a 
parameter  

(3 .1o ) 

find a person who has in fact his E, = 1. We 
standard subject  (v = o). And then the item 

ci 	. 

01 

is the same simple function of the probability that the standard  
person gives a correct answer to this item. 

2:1.3) To some psychologists this assumption at first sight 
appears to be rather startling, since it is well known that usual-
ly quite high correlation coefficients between responses to 
different items are found. 

This fact is, however, a consequence of the assumption. 



To exemplify we may consider five subjects with the parameters 

o.ol, o.lo, l.o, lo, loo, 

being given three items with the parameters 

1.o, 2.o, lo. 

The probabilities of correct answer become: 
c  

1 l.o 	2.o 	lo 

	

o.ol o.ol 	o.o2 	o.lo 

	

o.1 ; o.lo 	o.17 	o.5o 
1.o 	o.5o 	o.67 	o.89 

	

lo 	o.89 	o.95 	o.99 

	

loo 	o.990 o.995 0.999 

where it should be noted that for each item the probabilities vary 
from small values to almost unity. 

Now the theoretical correlation coefficient in a population of 
individuals equals the correlation coefficient of the probabilities, 
calculated with the parameter distribution as a weight function. 
It follows that even with moderate variation of E,, from o.1 to lo 
say, we should obtain quite high correlation coefficients. But, 
of course, if is the same - or practically the same - for all 
individuals the correlation coefficient becomes o or close to it, 

Thus, the model suggested is not at all at variance with the well 
known findings, but,clearly, under this model the correlations 
do not represent intrinsic properties of the items, being mainly 
governed by the variation of the person parameters. 

In order now in a more positiv&Iply to elucidate what ie implied 
by our assumption we shall turn attention to the very basic concept, 
that of probability. 

Probabilities are often thought of as a kind of formalization or 
idealization of relative frequencies. In the model suggested this 
point of view does not apply directly since large scale repetitions 
of a test are not conceivable. However, in modern xiomatics of 
probability theory, initiated by A.N. Kolmogoroff 1 ), probabilities 
are just real numbers between o and 1 that obey a certain ScA of 
rules. Within that framework we may very well allot probabilities 
to events that. cannot be repeated, such as the two possible responses 
of a person to an item (i) in an intelligence test. With a view 
to the following discussion we shall temporarily use the notations 

p{(+)
i 

j 
i 

} and p g); for such probabilities for a given person. 

1) See e.g. W. Feller: 	An Introduction to Prob - bilit, Theory 
,nd Its .1pplic'tions. I. Second.ed. 	..iley. De.; York 197. 
(Introduction .nd ch pt. I, IV, V. 



Considering next his possible responses to two items, 
they may also be allotted probabilities: p{_( 1.), (0} alia 
our third assumption states lalter,/that his responses 
should be "stochastically independent". Technically 
expressed in the following relations 

p {(!), (+) = p t(!)1 p [(+ )1 

p kii.-  ) , ( j 	= 	{.( ii: ) p { ( i  )} 	etc., 

but what does it mean? 

(3.11) 

i and j, • 
etc. Now 

to i and j 
this is 

If in the first of these equations we divide by p 

second by 03 )1 we get 

p 	 P f(!) (+) 	P f(!), ( j )j 

P {. ( +3 	- 	'DLO)} 	• 
(3.12) 

and in the 

In order to realize the content of these relations we shall for 
a moment return to relative frequencies as a background for 
probabilities. 

Imagine a large number, N, of subjects with the same parameter, 
as being exposed to the two items in question. Then for instance 

Np{(+)) "stands for" the number out of the N subjects which gave 

the right answer to item j. Similarly Np 1c(+ - + )) "stands for" 

the number out of the N subjects which gave the right answer to 
both i and j. Thus the latter number divided by the former one: 

Np f(!) (:,31  )1 

Np 	)1 

"stands for" the relative frequency of right answers to both i and 
j among those who gave the right answer to j. Or, simpler, the 
relative frequency of right answers to i, provided the answer to 
j was correct. 

Reducing by N we just have the ratio(3.12 o) f the two probabilities 
which we shall call: the conditional probability of a + answer  
to i, given a + answer to j. The notation is 

P f( i ),( j )} 

	

(3.14) 	 pf(! ) / ( + ) } - 	+ 	+ p f(+ )1 

Thus the relation
3.12)

may be written 

	

(3.15) 	p {(!) 	= p 	) 1 )} = p f(!) 

i.e. the probability of a + answer to i is independent of whether 
the answer to j is + or -, it is just the probability of a + 
answer to i. 

(3.13) 



(1 -1- C i )( 1-1- C j ) 

: 

1 
(11-c i )(1+E i ) 

• 

And of course the same holds for a - answer to i. This is a 
specification of the statement that the answers to i and j are 
stochastically independent. 

Assumption 3, however, requires still more. 

First it requires for each subject that the answers to all questions 
should be stochastically independent. Technically this is expressed 
in the equation 

(3.16) 
	p  {(4.1 ) (+2 ),  „ „ „ (4.1c )i. 	p {(+1 p  {(42 )} „ „ „p{(k)} 

and all its analogues. The content of this statement is that 
the probability of a certain answer to an item or of a combination 
of answers to a set of items is unaffected by the answers given to  
the other items. 

In its full scope assumption 3) requires that the probabilities 
corresponding to any combination of subjects and items should be 
unaffected by all the other answers. 

4. Comparison of two items.  

As an introduction to the more general treatment of the model in 
section 5 we shall consider how two items may be compared. 

According to (3.11) and (3.3) the probability of correct answers 
to both item i and item j is 

(4.1 ) 

{

pf(!) , (+)k) = p f(+) klp {,(+ )1 0 
2 E.E 

1 j  

for a subject with the parameter E. Similarly 

(4. 2 ) 	14* , (1)k) _ 

( 4. 3) 	 {. ( 1 )4)k} - 

(4.4) 
	p {(i),(1)10 

With the notations 



al. - 
lo in case of answer - to item i 

a = a.+a. 
1 

(4.5) 

and 

(4.6) 

1 in case of answer + to item i 

the probabilities of a = o and 2 are given by (4.1) and (4A4) 

while the probability of a = 1 is the sum of (4.2) and (4.3): 

(4.7) pia.  = 110 - (1.1_E i )(1+e i ) • 

Now the conditional probability of a i  = 1 proVided a .  = 1 is 

- analogous to (3.14) - obtained by dividing (4.7) into (4.2). 
However, by that operation the common denominator and F,  in the 
numerators cancel and we are left with 

E i  
(4.8) 	 . lla . 	- e  :e. 	, 

i 

irrespective of the subject parameter  

Considering, then, a number, n, of subjects, all of which_happened 
to have a = 1, the probability that c of then have a i  = 1(ai  = o) 

is given by the binomial law 

(4.9) 

Accordingly by 

(4.1o) 

c, 	c c 	n-c 
PicInj = (rel)(6.:6 

j 
 ) (T4E-

j
) 

E . c 
e.+e 	n • j 

the ratio (e./c.) is estimated independently of the person  

parameters, the distribution of which is therefore irrelevant in 
the connection. 

Furthermore we may get a check on the model by first stratifying 
the subjects according to any principle - educational level or 
socio-economic status or even according to the total test score 
- and apply (4.1o) to each of the groups. For the model to hold 
the ratio c./e. should be the same in all of the groups and the 

variation of the estimates obtained should therefore concord with 
the binomial distributions (4.9). 

The appropriate test for this constancy has a remarkable property. 



Denote the local c's and n's by 6g,  ng  with g = 1,...h and their 
totals by c and n . Since the groups could be collected into 

one group of size n to which (4.9) applies we have 

(4.11) 
n -c 

	

n 	e. 	c. e 	. 	. 
= ( ')( 	) 	 • 

	

C 	.+C 	 •-FC • j 	1 j 

On the other hand the joint probability of the numbersci ,...,ch 
 is - due to their stochastic independence - 

(4.12) 	 -0- ( cg).( c;i1 ) (F-47) 
• • 

g 	j 	j 

In consequence the conditional probability of c i ,...,ch  given the 

total c , obtained by dividing (4.11) into (4.12), becomes in-
dependent of e i  and e j : 

(4.13) 

n 
(egg) 

_ g= n  

( c 5)  

It follows that as far as only the items i and j are concerned 
the testing of the model may be directed in such a way that it is 
independent of all of the parameters. 

In the formal derivation of the fundamental relation (4.8) subjects 
and items may of course be interchanged. 

Thus the comparison of two subjects /sand 1/by means of an item 
with parameter e leads to the conditional probability 

Cp- 
(4.14) 	p{aiella . =1,e} 

if ap., 	and a have a meaning similar to (4.5) and (4.6). And 
(4.14) is independent of which item was used. 

In principle, therefore, it should be possible to estimate the 
ratio 11/c1, independently of the item parameters and also to test 
the model independently of all parameters. In practice, however, 
this methOd does not work because the number of items - in contrast 
to the number of subjects - usually is small, in our actual cases 
only 17 and 18. 

h n 	c 	C . c. 	n -c 



5. Generalization to k items. 

In generalizing the results of the preceding section we shall first 
consider the responses of an individual with parameter F,  to k items. 

With the notation (4.5) and the adaptation 

(5.1) 	 a = a1+...+ak 

of (4.6) we may condense (3.3) to 

(5.2) 

a, 
(c 1 ) 
l+c i  

and the generalization of (4.1) through (4.4) to 

( 5. 3 ) 

= 	110 	p/ak k) 

	

a. a1 	ak 
C * *El "* Ek  

k 
11 (1+E i ) 
1=1 

 

 

In consequence of this result we shall derive the probability that 
a takes on a specified value r. 

If r = o every ai  = o, thus 

(5.4 ) 

	

pia 
=o f E,1 = 

where for short we write 

(5.5) 
	

II (l+cc i ) = 7.(C) 	. 

i=1 

r=1 may be obtained in k different ways: 

al  = 1, a2  = 	= ak  = o, 

al  = o, a2  = 1, a3  = 	= ak  = o 

(5.6) 

al  = a2  = 	= ak_i  = o, ak  = 1 

with the probabilities 



(5.7) & cl 
• • • 

E,e k 
, 

	 9 

the sum of which is the probability 

(€11- *** +ek )  (5.8) 	 Rte. = 110 - 	-240  

r = 2 may be obtained in ( k) different ways, namely by taking any 
two of the.'s to be 1, the rest of them being o. The probabiliti- al  
es of these combinations are 

,2„ ,2„ ,2„ 	2 
k  (5.9) 	(-- - 1'2 	(- '1'3 	(- '2'3  

--TTT-  ' 	'(0 ' 	'( ) ' 	
ck-1  

"" 240 r 	r 	r 
and the suni of them is 

(5.1o) 2( 1 c 2 1- *** -1.ek-lk )  1:qa =210 - 	r(0 

In general a . 	 r = r may be obtained in ( k ) different ways, namely 

bytakinganyroutofthek. al 's to be 1, the rest of them being 

o. The probabilities of these combinations being 

(5.11) * 6 1'" cr-lcri-1 

 

r 
's- k-r+1'" ck 

(E) 
) 

 

• • • 

the probability of a = r becomes 

	

(5.12) 	 pfa . =r10 - ,(0  

where for short 

	

(5.13) 
	

7; = cl—Y--+ck–r+i—cit • 

In particUlar for r = k (5.13) has only one term 

	

(5,14) 
	

= clE 2wck • 

If in (5.12) we let r pass through the values o,1,...,k all 
possibilities have been ezaueted and therefore the probabilities 
must add up to unity: 

k 

	

(5.15) 	 Z p{a = rl 	= 1. 
r=o 
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Herice 

(5.16) 
k ,a,(0  = 	T14r 

r=o 

i.e. 	are the coefficients in the expansion of the product (5.5) 
in powers of cx) • 

If the c's were known the r's might be computed and it would be 

possible from an observed a to estimate F,  and to indicate the 

precision of the estimate, for instance in terms of confidence 
intervals. Thus a is what is called an estimator for F,. How to 

compute an estimate from the estimator is not our concern at 
present, but as an estimator a has an important property. 

On dividing (5.1o) into (5.3) we obtain the conditional probabili- 
ty of the ai 's, given that their sum is r. Through this operation 

both the common denominator and the common power of F,  cancel and 
so we get 

(5.17 ) 

a 	ak E 
11 Ek  pial ,...,ak ia . =r,c1 - 

which is independent of F,, the parameter to be estimated. 

In order to realize the significance of this result we may turn 
to an obvious, but fundamental principle of science, namely that 
if we want to know something about a quantity - e.g. a parameter 
of a model - then we have to observe something that depends on  
that quantity - something that changes if the said quantity varies 
materially. 

For the purpose of estimating the parameter F,  of a person the 
observations a ."' ak  are at disposal. On repetition of the 

experiment they would - according to our theory - vary at random 
in concordance with the distribution (5.3) which depends on C. 
a also is a random variable, the distribution of which (5.12) 

depends on F,  and therefore it may be used for the estimation. 
But what (5.17) tells is that the constellation of o's and l's 
producing a, which also varies at random, has a distribution that 

does not depend on C. From the fundamental principle it then 
follows that once a has been recorded any extra information about 

which of the items were answered correctly is, according to our 
model, useless as a source of inference about F, (but not for other 
purposes as will presently be seen). 

x) In the algebra they are known as "the elementary symmetric 
functions" of c 'IC 
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The capital discovery that ouch situations exist was madu by 
R.A. Fisher in 1922, and following his terminology we shall call 
a 'a sufficient statistic - or estimator - for the parameter in 
question. 

In the present situation, however, the sufficiency of a needs 

a qualification as being relatives  since it rests upon the condition 
that e's are known. As long acs ouch knowledge io not available 

the sufficiency as such is not very helpful, but the important 
point of (5.17) then is that it depends solely upon the e's, not 
on 

From (5.17) we may therefore proceed as we did from (4.8) - which 
actually is a special case of (5.17), viz. k=2 - considering a 
collection of subjects which all happened to have a .  = r. 

Specifying by a yi  the a i  of subject no. v and denoting by (a vi ), 

given v, the set of responses a vi ,...a yk , i.e. 

(5.18) 
	

(a vi ) m (a vl.""' avk )  

we may rewrite (5.17) in the form 

(5.19) 

a vl 	aPk 
... 1 	E k 

P f ( avi ) 1 ay.'ij - P.-- 1,...,n • 

The responses of the n persons being independent their joint 
probability is obtained by multiplying the n probabilities 
(5.19). Denoting for short the whole set of nxk responses by 
((a vi )) - the double bracket indicating variation over both v and 

- we get 

(5.2o) 

where 

(5.21) 

a .1 	a  .k c 	...E 

	

P(((ayi))1(a0.=r)) = 	
k  

r 

• 

.1 
. = 

	

a y 	• 
P.1 

(5.2o) implies that - as a consequence of the model - we have to 
deal with the total number of correct answers to each item for 
the n persons in question. 

However, the derivation of their joint distribution we shall take 
as a special case of the further generalization in the following 
section. 
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6. Separation of parameters. 

Let 1.1.s finally consider the responses of n individuals with the 
parameters & i , 	 k items with the parameters 

"•., E. With the notation a vi  introduced in the last section the model 
(5.2) now takes the form 	 a 

(E, E.) vi 

(6.1) 	 v 

oi 

and on the assumption of stochastic independence of all of the 
responses ay ., v. 1, ...n, i 	1, ...k, the joint probability of 
thewholesetUao,W of them becomes 

Pf((avi) )l()))'(61)v I t
lilillpfavilE4)'Ei) 

(6.2) 	 n 	k 	aoi 

jj1 11,11  
n k Ti II 
p=1 J.' 

a v. 
andthattheparametere.occurs in n places, each time raised 

to a power aoi , adding up to a total power of a .i . If furthermore 

the denominator is denoted by 

(6.3) 
n k 

1-Mv ),(E i )) = 	i7- (1-1-E,,c i ) 
v=1 i=1 

we may simplify (6.2) to 

n ay. 	k a . 

• c 
(6.4) 	 pf((api ))1( v ),(E i )'} - v=- 	  

r((c),(E i )) 

This formula is the generalization of (5.3) to n persons, but in 
consequence of (6.4) we now have to derive the probability that 
al. ,...an.  and a .1 ,...a .k  take on two specified'sets of values 

r ...,r and s1'  ...sk  • '  

In analogy to section 5. - cf. in particular the logical chain of 
(5.11) through (5.13)-we should find all possible ways of building 
up zero - one - matrices ((a.01 )), that have the same row totals 

=l,.,,k, state the 
v. vt 	 .1 	1 

probability of each realization and add up all such probabilities 
to a total joint probability of the two sets of totals considered. 
However, this procedure is greatly simplified by the fact that 

As regards the numerator we notice that the parameter o  occurs 

in k places, each time raised to a power a vi  . which altogether makes 
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all the probabilities to be added are equal, viz. - according to 
(6.4) - 

06.5) 

n 	si  

v 1.11 1)  

TMv ),(E i )) 

Thus we just have to count the number of different ways in which 
it is algebraically possible to build up a zero - one - matrix with 
the row totals of ry ,V=1,...,n and the column totals of s i , i=1,...,k. 

Determining this number is a combinatorial problem and it appears 
to be rather difficult, but at present we need nothing more than 
a notation. For this number we shall write 

(6.6) 

r 	r 1" n 

s 	s 1" k 

  

and then we have 

n  rj, k  

(6.7) 	p f(a, ..r, ), (a. i .s i  ) I 	) , (ci# 	
(r,) 11 E

i
A 

(Si ) 
(&, 1,),(E i )) 

This joint probability distribution of the row totals ay.  and the 

column totals a contains just as many parameters as observables, 
and the latter would therefore seem suitable for estimation purposes. 
How true this is becomes clear when we divide (6.7) into (6.4)(or 
(6.5)) to obtain the probability of the whole set of observations, 
on the condition that the totals of rows and columns are given. In 
fact, all parametric terms cancel so we are left with a conditional 
probability 

(6.8) 
	

pf((api ))1(a p. =rv ),(a .i=s i )) - 	 

(si ) 

that is independent of all of the parameters. 

Therefore, once the totals have been recorded any further statement 
as regards which of the items  were answered correctly by which persons  
is, according to our model, useless as a source of information about  
theparameters.(whichotherusemaybemadeofthea vi 's will 

emerge at a later stage of our discussion). Thus the row totals 
and the column totals are not only suitable  for estimating the 
parameters, they simply imply every possible statement about the  
Parameters that can be made on the basis of the observations  ((a 1A )). 
Accordingly we shall, in continuation of the terminology introduced 
in sect. 5, characterize the row totals a y. , v.1,...n and the column 

totals a i , 	 as a set of sufficient estimators for the  

parameters 	and ci,...ek. 



1 	r 
r(si )My ))  = 	(r,) 1 (6.11) 

r  
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As (6.7) contains both sets of parameters a direct utilization of 
this formula would apparently lead to a simultaneous estimation of 
both sets. However, in view of previous results, cf. the comments 
following (5.17), it would seem appropriate to ask whether it is 
possible - also in this general case - to estimate the item parameters 
independently of the person parameters and, if so, vice versa as well. 

In order to approach this problem we shall first derive the 
distribution of the row totals, appearing as exponents of the Vs, 
irrespective of the values of the column totals, by summing (6.7) 
over all possible combinations of s l ,...sk. During this summation 

the denominator iM v ), (c i )) keeps constant and the same holds for 

the terms V,0=1,...,n in the numerator. Thus, on introducing 

the notation 

(6.9) 

we obtain 

pro( ( ci)) = 

) s
1 	sk 

i) (si ) El 	Ek 

(6,10 ) p {( a t, .r ,) it& 	, ( c i )} = 

n  
((c)).ine:v 

r(rv ) 	1  v=1 

 

r(( y ),(E i )) 

from which it is seen that the 	might be estimated from the row 

totals if the c i 's - and therefore also the polynomials (6.9) 

were known. 

Similarly we may sum (6.7) over all possible combinations of 
ri ,...rn , keeping 81 ,...sk  fixed. Substituting in (6.9) 1 ,...&11  

for...ck 
and in consequence interchanging the r's and the s's 

we get 

where by the way 

(r o ) 

	

(6.12) 	 • 
(r,,)  

With this notation the summation yields on analogy to (6.10): 
k  

((& ))* 
(r(S i ) 	V 	H 

si  
i=1 1  

	

(6.13) 	p/(a.i=s0i(v),(60Y - 	)(e i )) 
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and accordingly the c i 's might be estimated from the column totals 
provided the C 9 's were known. 

Thus, we might estimate the C's 
c's if the ,'s were known! And 
been relatively sufficient. In 
(6.7) to obtain the conditional 
(av. ) we get 

if the c's were known, and the 
both estimations would even have 
fact, on dividing (6.1o) into,  
probability of (a .i ) for given 

   

k si 
c i  

kr0 )((e i )) 
(6.14 ) pf(a .11  ..s.) 1(ay ..rv),( cv), (ci)1 

    

which is independent of the parameters C v  to be estimated. And 

similarly the division of (6.13) into (6.1o) gives 

   

/L ro  

vH1 1)  
r( si )(( 0 )) 

   

(6.15) p 	) ( a .i=s i ) ' ( v ) ' (c i )) = 

    

    

which is independent of the c's. 

But, of course, as long as neither set of parameters is known 
these possibilities are of no avail. 

It is one of the characteristic features of the model under 
consideration that this vicious circle may be broken, the instrument 
being a reinterpretation of the formulae (6.14) and (6.15). 

In fact, as (6.14) depends on the c's, but not on the C's, this 
formula gives the opportunity of estimating the c's without 
dealing with the Vs. Thus the objections to both (6.7) and 
(6.13) have been eliminated. The unknown C's in these expressions 
have been replaced by observable quantitieg,viz. the individual 
totals a . v. 

Similarly in (6.15) the c's of (6.7) and (6.1o) have been re- 
placed by the item totals a ., in consequence of which we may 

Thus the estimation of the two sets of parameters may be separated 
from each other. 

In this connection we may return to (6.8), noticing that this 
formula is a consequence of the model structure - (3.3) and 
the stochastic independence - irrespective of the values of 
the parameters of which the right hand term is independent. 

Therefore, if from a given matrix ((a vi )) we construct a quantity 

which would be useful for disclosing a particular type of departure 

.1 
estimate the c's without knowing or simultaneously estimating 
the c's. 
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from the model, then its sampling distribution as conditioned by 
themarginals(av dand(.)will be independent of all of the 
parateters. 

Thus the testing of the model may be separated from dealing with 
the parameters. 

The question of how to perform such testing in practice and also 
that of turning the observed row and column totals into adequate 
estimates of the Vs and the c's we shall not enter upon on this 
occasion. 

In El], chapter VI these questions were dealt with by simple 
methods which were taken to be acceptable approximations. In 
case of the numerical sequences the observations passed the test 
for the model satisfactorily, but the model failed completely in 
the case of the geometrical shapes. In the latter subtest the 
time allowance for some technical reasons had been cut down below 
the optimal limit, but a reanalysis of the data - to be reported 
elsewhere - has shown that when allowance is made for the working 
speed for each subject, then the data fit the model just as well 
as for the numerical sequences. 

However, from a theoretical point of view the method used was 
unsatisfactory (cf. 	, chapter X, in particular pp. 181-182). 
By now we are in the process of working out better methods, and 
therefore we shall, for the time being, leave the documentation 
of the applicability of the model at a reference to the earlier 
work. 

7. Generalization of the model. 

As a possible generalization to the case of more responses than 
two the following model may be suggested. 

Consider a number of subjects (v=1,...,n) being exposed to the 
same set of stimuli (i=1,...,k). In each case is recorded one 
response out of a finite set of possible responses 

(7.1) 	 x(1)  p • • • p X ( fr )  p • • • p y ( •m)  

the set being the same in all cases. 

In each case a probability is allotted to each response category 

x (P-) : 

( 7.2 ) 

	 pfx (11» 01 	
vi 

where A vi(1)  ,...,A v()  are positive numbers adding up to d pi , 

With the clause that the responses, given all the parameters 
(/-9 X vi  , are stochastically independent these requirements generalize 

the assumptions 1) and 3) of sect. 3. 



{ pfx(2)1,,i) - 	1  
a pe i+1 

pfx (1) 1v,i) - 	P61 ' 

(7.7) 
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In an attempt at generalizing the remaining assumption (3.2) 
we shall simply assume that amultiplicative rule holds for each 
category, i.e. 

(7.3) 

for all and i. 

(t0 	(PO (fr9  
vl 

In order to see (7.3) as generalizing (3.2) we may consider the 
case m = 2 when 

(7. 4) 

and therefore 

(p ix( 1 )1 , 

( 7. 5 ) 

= (1) 6 ( 1 ) + 0 2 ) 6 ( 2 ) 

(1) (1) 
C i  

1  - 	(1) (1) 	(2) (2) ; 11 . s i 	6 i  

x (2) 6 (2) 

pix(2)1V.i) - 	(1) (1) 	(2) (2) 	• 
C i 	C i 

On dividing through by 0 2) eC 2)  and introducing the notations v 

(7.6) 

we obtain 

(1) 	c (1) 

Cv - (2) ' 6 1 - (2) 
e i  

which is equivalent to (3.2). 

With suitable notations the formal theory of the model for m>2 
runs perfectly parallel to the developments of the, sections 4 
through 6, but as the algebra required is somewhat more advanced 
we shall leave it aside as being for the present purpose less 
material than the conclusion which is quite analogous to the 
main result of sect. 6: 



From an analogue of (6.14) it follows that it is possible to 
estimate and otherwise appraise the stimulus parameters 
(P) e 	' 1=1,...k, 	 without implying the subject parameters 

(ft) ,, , • •n,p-=1,•••m• 

Similarly it follows from an analogue of (6.15) that it is 
possible to estimate and otherwise appraise the subject parameters  

c2 A) without implying the stimulus parameters elf ) . 

From an analogue of (6.8) it follows that it is possible to 
direct the testing of the model structure - as given by (7,2), 
(7.3) and the independence - in such a way that the test becomes  
independent of all of the parameters. 

The first two statements we may call the mutual separability 
of the parameters while the third statement may be termed 
the separability of the model structure from the parameters.  
(cf. ELT, chapter X, sect. 5 and M). 

8. Specific objectivity. 

The formula (6.15) or its analogue may of course be applied to 
any subgroup of the total collection of subjects having been 
exposed to the k stimuli. Thus the parameters of the subjects 
in the subgroup may be evaluated without regard to the parameters 
of the other subjects. 

In particular the parameters of any two subjects may be compared 
on their own virtues alone, quite irrespective of the group or 
population to which - for some reason - they may be referred. 
Thus, as indicated in the introduction,the new approach, when 
applicable, does rule out populations from the comparison of 
individuals. 

Similarly the formula (6.14) or its analogue may be applied to 
any subset of the k stimuli, and accordingly their parameters 
may be evaluated without regard to the parameters of the other 
stimuli. In particular the parameters of any two stimuli may 
be compared separately. 

With these additional consequences the principle of separability 
leads to a singular objectivity in statements about both parameters 
and model structure. 

In fact, the comparison of any two subjects may be carried out 
in such a way that no other parameters are involved than those  
of the two subjects - neither the parameter of any other subject 
nor

o 
 any of the stimulus parameters. 

Similarly, any two stimuli may be compared independently of  
all other parameters than just those of the two stimuli - the 
parameters of all other stimuli as well as the parameters of 
the subjects having been replaced by observable numbers. 
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It is suggested that comparisons carried out under such 
circumstances will be designated as "specifically objective". 
And the same term would seem appropriate for statements about 
the model structure which are independent of all of the para-
meters specified in the model, the unknown values of them be-
ing, in fact, irrelevant for the structure of the model. 

Of course, specific objectivity is no guarantee against the 
subjectivity of the statistician when he choses his fiducial 
limits or when he judges about which kind of deviations from 
the model he will look for. Neither does it save the statistician 
from the risk of being offered data marred by the subjective 
attitude of the psychologist during his observations. 

Altogether, when introducing the concept of specific objectivity 
I am not entering upon a general philopophical debate on the • 
meaning and the use of objectivity at large. At present the 
term is strictly limited to observational situations that can 
be covered by the stimulus - subject-response scheme, to be 
described in term of a prrNlyll, i1t3tio ,.o0(:1 c7Jhic 
parameters for stimuli and for subjects. And the independence 
of unwarranted parameters, entering into the characterization 
of specific objectivity, pertains only to such parameters as 
are specified in the model. 

What has been demonstrated in details in the case of two 
response categories and indicated for a finite number of 
categories then is that the specific objectivity in all three  
directions can be attained in so far as the type of model  
defined by (7.1), (7.2) and the independence holds. 

Recently it has been shown that - but for unimportant mathematical 
restrictions - the inverse statement is also true: 

If a set of observational situations can at all be described 
by a probabilistic model (7.1), including the independence, 
then the multiplicative rule (7.2) is also necessary for  
obtaining specific objectivity as regards 	both 	eets of  
parameters and the model structure as well. 

In particular, if only two responses are available then the 
observations must conform to the simple model (7.6) (or 
equivalently (3.3)) if it be possible to maintain specific 
objectivity in statements about subjects, stimuli and model. 

9. Reduction of parameters. 

The general model allots m parameters to a subject and equally 
many to astimulus i and even if, by an argument similar to (7.4) 
through (7.7), the number may be reduced to m-1 it easily becomes 
unduly large. 

As a case in point we may think of a number of texts, each of Zoo 
words, to be used in testing for proficiency in reading aloud. With 
number of errors as response categories each child as well as each 
text should, according to the model (7.2) and (7.3), be characterized 
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by no less than 2oo parameters ! However, in -J-j, chapter II 
data:of this type were well described by a Poisson model with 
only one parameter per subject and per text. The number of 
errors being denoted by a, the model states that 

pjah),i} = e -
XDi 

= 1) 6 i 

xa 
vi 
a! 

and in chapter VIII separability theorems leading up to specific 
objectivity have been proved. 

This result points to an interpretation of the basic model (7,2)-
(7.3) that becomes crucial for applying it in practice, viz. that 
it is not necessary to assume that the m parameters for a subject 
or the m parameters for a stimulus are functionally independent. 
If in the present case we replace iu by a and write 

,(a) 	r 	(a) - c i 	 ;) 6 1 
(9.3) 	 - 	 = e 

(-.1) 	= 	a , 6 i 	a! , vvi 

and if we allow for an infinite, but enumerable set of categories 
(a=0,1,2,...), the model reduces to (9.1)-(9.2). 

( 
It is a trivial implication of the general theory that each a)  

and each (a) may be estimated objectively, the remarkable point 

being that the specific objectivity also holds for the new para-
meters & I)  and c i  in the reduced model. 

This situation raises the question of when and how the basic model 
may be reduced to simpler models, i.e. models where the m parame-
ters per subject and per stimulus can be expressed in terms of 
considerably fewer elements for which the specific objectivity 
is preserved. 

This problem has also been solved and the solution was presented 
as formula (4,6) in (2) with a demonstration that the model 
possesses the separability property leading up to specific 
objectivity. So far, however, the proof that - within certain 
limitations - this type of model is the only mathematical possibi-
lity has not been published. 

10. Fields of application.  

The problems we have been dealing with in the present paper were 
formulated within a narrow field, viz, psychological test theory. 
However, with the generalization of sects, 7 and 9 and with the 
discovery of specific objectivity we have reached at concepts of 

such generality that the original limitation is no longer 
justified. 

a 
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Extensions into other fields of psychology, such as 
threshold experiments and experiments on perception 
offer themselves, but the stimulus-subject-response 
by no means limited to psychology. 

Thus in a recent publication N the above mentioned 
was employed in an investigation of infant mortality 
the period 1931-196o. 

In each year the number of infant deaths (of all causes or of a 
particular cause) out of the number of children born was recorded 
for both boys and girls, born in or out of wedlock. In this case 
the years served as "subjects", the combination of sex and legitimacy 
of the children as the "stimulus", while the numbe::• of infant deaths 
out of the number of children born were the responses. 

From economy we may take household budgets as an emmple. The 
families serve as "subjects", income and expenditures as classified 
into a few types, serve as "stimuli", while the am6unt earned or 
spent are the responses. 

These examples may indicate that the framework covers a rather 
large field, at least within Social Sciences. Delineating the 
area within which the models described here apply is a huge 
problem, the enquiry into which has barely started. 

But already the two intelligence tests mentioned iA sect. 2 and 
discussed at the end of sect. 6 are instructive as regards the 
sort of difficulties we should be prepared to meet, For one of 
them, the numerical sequences, the analysis in [1] Chapter VI 
showed a perfectly satisfactory fit of the observations to the 
model, i.e. in this case specific objectivity may be obtained 
on the basis of the response pattern for each subject. For the 
other test, the geometrical shapes, the analysis most unambiguously 
showed that the separability did not hold. As a matter of fact, 
in the first case the analysis, in agreement with . the theory, 
ended up with a bunch of parallel lines with unit ;ilope, while 
in the second case I got a family of straight line with all 
sorts of slopes, in complete disagreement with the'model. 

a/ 
The same kind of picture had been obtained in diffErent intelligence 
test which however, was of the omnibus type, cont:ining items that 
presumably l,called upon very different intelligence functions. In 
this case,Htherefore, the data could not be expectd to allow for 
a description comprising only one parameter for each subject. 

The items in the numerical sequences are  much more uniform in that 
they require that the testee realizes a logical structure in a 
sequence of numbers. And according to the analysi;; the items 
were sufficiently uniform—although of very differeit levels of 
difficulty.— to allow for a description of the date' by one parameter 
only for each subject as well as for each item. 

The items of the figure test were constructed just as uniformly as 
the numerical sequences and therefore it was somewlat of a. surprise 
that they turned out quite adversely. 

To this material I could add observations on two o . ler tests, 

psychophysical 
of values 
framework is 

Poisson model 
in Denmark in 
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constructed with equal care. One was a translation of the idea 
in Raven's Matrix Test into letter combinations, at the same time 
substituting the multiple choice by a construction, on the part 
of the testee, of the answer. For this test the results were 
just as beautiful as for the numerical sequences. The other one 
was a set of verbal analogies where the number of answers offered 
was practically infinite, with the effect that the multiple choice 
was in fact eliminated. Here the results of the testing were just 
as depressing as for the figure test, 

re 
This contrast, however, led to the'solution of the mystery. The 
difference between the two pairs of tests was not one in construction 
principles, but one in the administration of the tests. 

For all four tests the adequate time allowance was determined by 
means of special experiments. On applying them to random samples 
of Zoo recruits it turned out that the number of correct answers 
formed a convenient distribution for the letter matrix test and 
for the numerical sequences, but verbal analogies and the figure 
test were too easy, so the distributions showed an undesirable 
accumulation of many correct answers. 

This happened in 1953 when only the barest scraps of the theory 
had been developed, and yielding to a considerable time pressure 
the test constructor, consulting me on the statistical part of 
the problem, severely cut down the time allowances so as to move 
the distributions to the middle of the range. And while succeed-
ing in that we spoiled the test, turning it into a mixture of a 
test for capacity and a test for speed! 

More recently, however, I have had the opportunity of reanalyzing 
both sets of data, grouping primarily the subjects according to 
their working speed, as given by the number of items done, and 
applying to each group the technique of [A , chapter VI. The 
result was startling: Within each speed group I found the bunch 
of parallel lines with unit slope required by the theory, and 
their mutual distances - measuring the relative values of the 
loge's - were equal in overlapping items, i.e. the relative 
difficulties of the items were independent of the working speed. 
Altogether, with speed as an ancillary information specific 
objectivity may be attained as regards the properties the tests 
really aimed at measuring. 

Turning the final statement upside down we get the morale of this 
story: Observations may easily be made in such a way that specific  
objectivity, otherwise available, gets lost. 

This, for instance, easily happens when qualitative observations 
with, say, 5 categories of responses for convenience are grouped 
into 3 categories. If the basic model holds for the 5 categories 
it is mathematically almost impossible for the 3-categories-model 
also to hold. Thus the grouping, tempting as it may be, will 
usually tend to slur the specific objectivity. 

In concluding I therefore feel the necessity of pointing out that 
the problem of the relation of data to models is not only one of 
trying to fit data to an adequately choSen model from our inventory 
and see if it works, a question in the opposite direction is 
equally relevant: How to observe in such a way that specific 
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objectivity obtains  
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