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1. Introduction.  

The concept of "objectivity" raises fundamental problems 
in all sciences. For a statement to be scientific "objectivity" 
is required. However, exactly what "objectivity" means is 
disputed among philosophers and I am not going to enter into 
that debate. 

We will take a quite specific point of departure. The lead-
ing principles originated in test psychology and the present 
theory will be formulated within a psychological framework with 
"individual", "stimulus", "situation", "response" and "reaction" 
as central terms. In the end you may realize that the theory 
does not deal with psychology in particular, but has much wider 
scope. 

It is convenient to start by considering an intelligence 
test - a sequence of questions or items which are ordered by 
increasing difficulty. 1000 recruits in the banish army answered 
each of the items right or wrong, + or -. All persons completed 
all items, no items were slipped (slightly idealized). The infor-
mation from this investigation may be represented in a (0,1) 
data matrix with e.g. individuals as rows and items (stimuli) 
as columns. 

In traditional analysis, a raw score x - number of correct 
answers - is counted for each individual. The individuals are 
considered to be a "representative sample" from some more or 
less well-defined "universe" or population, the distribution of 
which with regard to x is formed and cut into a number of pieces. 
With an enumeration of these pieces the standardization is com-
pleted and it is then claimed that "intelligence" has been 
"measured". Sometimes the analysis is more elaborate in using 
for instance inter-item correlations. This kind of analysis is, 
however, of the same type as the usual standardization in so far 
as it refers to a population and the information gained depends 
upon the population. 

Skinner has vigerously attacked this kind of statistical 
analysis, maintaining that the order to be found in animal and 
human behaviour should be extracted from investigations into 
individuals and that psychometric methods are inadequate for 
such purposes since they deal with groups of individuals.Zubin 
expresses a similar point of view concerning abnormal psycho-
logy: "Recourse must be had to individual statistics treating 
each patient as a separate universe. Unfortunately, present day 
statistical methods are entirely group-centered so that there 
is a real need for developing individual centered statistics. 
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A basic aim of the present work is just to take care 
of the individual. The first step is to realize a basic 
uncertainty regarding whether an individual will answer a 
question + or -. It may happen that a clever person gives a 
wrong answer to an easy question, he may temporarily feel, 
uneasy or be distracted by outside noise. He may also be ir-
ritated by easy questions. and more or less purposively give 
wrong answers - later become interested and answer correctly. 
Conversely a stupid person may hit upon a correct answer by 
chance or even by way of a wrong train of thoughts. 

Some psychologists are opposed to probabilistic models 
because they prefer to see a cause behind every act. 

A probabilistic model, however, does not imply that the 
behaviour in a test situation is haphazard, but only that 
the data may be represented  by a chance model. 

A model is not meant to be true. Even in classical 
physics models are temporary - good enough for some purposes. 
In the last analysis, however, even deterministic models in 
physics are in need of probabilistic reformulations, since 
the observational data themselves do not follow deterministic 
laws, only the parameters in the models do so. Thus if psyco-
logists insist on deterministic models they really are trying 
to be "plus royal que le roi". 

2. A simple model for measuring.  

Anyhow, we shall start by allotting a probability to an 
individual)) dranswering an item i correctly and write 

X 	 1  
(2.1) 	pi+ IP ,i} = 	 ' p (-1v,i } 	

,ayi  2 o • 
11-X vi  

(2,2) 	 XId 	
Pf-lvti/ 

directly, but in intelligence testing independent replica-
tion usually are out of question. For estimation purposes 
a further specification of X vi  therefore would be necessary. 

With a view to mathematical simplicity I shall suggest a 
partition of Xa  into two factors, one pertaining to the per- 

son, the other one to the item, i.e. 

(2.3) 	 X = 	s v 	v 

If observations could be repeated we might estimate 

0+11) 04 

- not with standing the apparent boldness of this assumption. 
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Later on much stronger grounds for attempting this choice 
will emerge. However, it would not be wise just going 
ahead and make use of the model. Models should never be 
believed in, they are never more than tentative.Therefore 
investigations of a model should be directed such as to 
disclose its weaknesses pointing to substantial improve-
ments, if possible. 

Many statisticians and users of statistics have been 
somewhat vague and loose on this point. In many problems 
the use of a certain class of statistical specifications 
has been recommended, but an effective examination of the 
adequacy of the chosen specification is rarely seen. As a 
case in point it may be mentioned that a simple additive 
model for many years has been in common use in two way 
analysis of variance with one observation per cell, but 
not until 195o a paper appeared on how to check the model 
(J.W.Tukey, Biometrics, Vol.5, p. 233-242). 

In our discussion therefore much attention will be 
paid to ways and means for effectively controlling the 
applicability (not to be confused with the "validity") of 
the model. 

The model as given by (2,1) and (2.3) implies that 

(2.1a) pffl v , 

and accordingly 

,.4 10 i 	- 	1  = 7 77 	Pk I i ) 	1-1-& v E i  -w-y 

(2.3a) 

As presented this model is multiplicative, but turning 
it into an additive model in just a matter of transforming 
logarithmically and is no particularly important queation. 

The unit of measurement is arbitrary. We might choose - 
the parameter of a standard person for a unit, but that 
would be impractical as he cannot be preserved. More suitable _A 
a particular item, say i = o, may be chosen as having e 0=1 

and then 
pi+IV,o1 

11 , 03 

appears to be the "betting odds" - based upon an objective 
probability - of person V for a correct answer to the stan-
dard item. Next we may "hunt for" a standard person ()),4 o) 
with & c:,  = 1 and then 

( 2.4) 



(2.5) 
0+1041 

6. 
1 pHo,i1 

becomes the betting odds for the standard person for 
giving a correct answer to item i. In both cases the 
parameter is a simple function of a particular prob-
ability. 

Considering now what happens to pf+iv,i} in various 
combinations of items and persons, it is obvious that for 
a fixed e i persons with small parameter values have a small chance for answering correctly, while the probability 
approaches unity when C I) is very large. 

Tentatively we may therefore think of the personal 
parameters as his "degree of ability" in such problems as 
were given in the intelligence test in question. 

Conversely, if items with small and large values of E i  

are given to the same person he gets small and large chances, 
respectively, for giving the right answers. Thus 	may be 

thought of as "the degree of easiness" of the item and the 
reciprocal o f  = 1/e i  as "the degree of difficulty" - with 

certain limitations, of course, as for instance that the 
person in question should possess a cultural background 
that makes the items comprehensible to him. 

To (2.1a) we shall add the assumptions that the 
answers given by one person are considered to be independent 
of those of other persons and also of the answers he has 
given to preceding questions. 

Off hand, psychologists often dispute the latter 
assumption, but on second thought they usually give in. 
Traditionally, answers are scored 1 or 0 and correlations 
between items are computed. These correlations quite often 
amount to + 0,90 or even more. On this background the as-
sumption of independence may be shocking. There is,however, 
no discrepancy here; on the contrary, the positivity of the 
correlations may be directly inferred from the assumptions, 
as soon as it is clearly understood, that the independence 
is assumed only within each person. In fact, for any two 
items i and j we have 

&VCA. 	 V j  
( 2.6) 	13 1+ 19, i J 	14-c „ E i 	P( .4-1P ' i} 	 1+'il)E J 

from which it is seen that 

C ‘)  small makes both p's close to zero 
and 

CI)  large 
	 " unity. 
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Thus the p's follow each other and this produces a 
correlation over a group of individuals with differing 
Vs. Accordingly stochastic independence within indivi-
duals is fully compatible with a parametrically generated  
interdependence within a population.  

As an analogy from the elementary theory of errors 
we may consider duplicate chemical observations: 

xv  = & I)  + 	Y1) 	Zo 	vv 

where C v  is, say, the concentration of nitrogen in some 

solution, u v  and v ).) being the errors of measurement, 
presumed to be independent. For each solution, then 
xv  and yv  are uncorrelated, but on titration of several 
solutions with different concentrations the variation of 

would produce a "correlation", the strength of which 
would depend on this variation as compared to the variances 
of the error terms. 

Returning to the intelligence test we should perhaps 
regard a test situation as a "learning" process or perhaps 
rather as an "adaptation" especially if the testees are un-
familiar with the type of items used. If a test With "new" 
items, e.gi consisting of letter matrics, is administered 
to a highly "intelligent" group but starting with later 
items, they may fail miserably. Some sort of finding out 
what the items are about seems to take place within the 
first items. Perhaps we ought to cut off the first few 
items from the analysis. 

+ and - answers are recorded as 1 and o,respectively. 
This,however, is not an arbitrary scoring, but just an alter-
native registration from the independence assumption it 
follows that if we put 

1 
avi= to 

(2.1a) more compactly may be written: 

( r  6.)
avi  

'nj 

1-1-Z 9 E i  

Consider an answer pattern for a given person: 

(2.7) 	 PfaVif 
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(2.8) 	pfavi ...a vic kv i = Pfala kv l 	pial)k lE. 9 / 

	

a vl 	 a 

(E V e l ) 	 ( 118 1C )  

(1+& 1) e l ) 	(14-& 1)e k ) 

av1+...aok 	8. 1)1 	avic  

61 	6 k  
(14- Be v e l ) 	(14-& 1)e k ) 

Here a remarkable thing has happened. Traditionally it has 

for no obvious reason been customary to count correct answers. 

But if the model is applicable we must do so because 

k 
E 	= 	has so to speak been inflicted upon us - 

1=1 

ao.  enters explicitly into probability of theiset of answers. 

Thus, counting is a consequence of the model - later we shall 
discuss whether the model is arbitrary or not. 

Accordingly we are going to consider: 'Dia l).  k v f. 

A given value al).  = r can be achieved in a number of ways. 

We have to find the probability for each way and then add these 
probabilities: 

r = 1. In this case the realizations are 

is 	1 	2 .... 	k 

1 o 

0 	1 • ... 	0 

0 0 0 0 

	 1 

with the probabilities 
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(1+& y e l ) 	(1+,7, 1)  

1.4-& ; 8 1 	1+;1 6 2  

1 	 . 	1 &v € k  

1-1-Bevel 	1-1- y s 2 	1-1-'ce k  

the sum being 

V (6 1 -1-  °°° 	ek )  
f aV. = 	= 

yri ( ' ''°°. 	 say. 
D(& 1) ) 

r = 2. Now( 2 ) realizations take place: 

i 

avi  

: 1 

1 

1 

o 

2 

1 

0 

1 

3 

o 

1 

1 

.... k 

o 

o 

o 

with a total probability of 

21 	&
2 e12 4- e

1 
 a +c

2  e 3 
 + ...+8k-1 s

k
) 

= 	&1J 	v 
. 	

(1+& y c l ) (1+E, v 6 2 ) 	(l+cs k ) 

2  v , 
f2 	 ek)  
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r arbitrary (k). Generalizing we get: 

(2.9) 	Pia 	= ri& 	= V  9. 	V 
	

Ir (6 1 — ' 6 k )  
V 

where r consists of (
k ) terms each of which is a 

product of r different 	6-parameters: 

(2.1o) 	ir (6 1 ,...,E k ) 	= 6 1 ...6 r+ E l ...6 

+ 6 k-r1-1° 	S k 

The next step which is quite decisive I shall, to 
the benefit of participants that are not too well versed 
in the relatively advanced theory of probability, express 
iliterms which are more illustrative than exact, but add 
that the translation into a correct exposition should be 
easy for those who are familiar with the concept of condi-
tional probability, 

Consider a large number (N) of persons with the same
v . NpN .  = rk ld; then "stands for" the number of them 

which gave a total of r correct answers and 'similarly 

Npfa vl ,..., avk lC p  "stands for" the number Iof them 

which showed the particular pattern of answers 

(av1 ,..., alsk ). Thus 

Npfs  ay.  = rkv i 

"stands for" the relative number of persons showing that 
particular pattern among those who had ay.  = r. Reducing 

by N we get what is called the conditional probability  

of the pattern (a vi ,...avk ), given that a y. = r: 

(2.11) 	p favi ,..., avk la y. = r1; 1)  PfaV1 9 °°°' alikkv.1 _ 

Pfay = ri&J 
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Inse, ing (2.7) and (2.9) into (2.11) we get: 

(2.12) 	pfa 
a vl 	

a
Vk 

6 1 	°°° 6  
A.'°°09a9kae= r,& p i - 

Tr (6 1'°°°' e k )  

The fundamental importance of (2.12) is that D(& 9 ) and 

cancel which implies that the conditional probability 

is independent of & v . 

Accordingly we have established a basis for estima- 

ting the item parameters from which all sampling problems 
have been eliminated.The conditional probabilities (2.12) 
give an information on item parameters that is valid for 
all persons with a

y.
= r, provided of course the model is 

applicable. 

Before proceeding further it may be worth while to 
consider in some detail a special case of (2.12) that of 
only two items for person Y. The four possible combinations 

of answers have probabilities that follow immediately from 
(2.1a) and the independence: 

(2.13) 

&vei 	&.0 8j 

1-f- v  6 i 	14 & I)  6 1+yi  1+& ) e j  

E. 
1 	. 	3  

1+& .1 e i 	1+&1) 6 j  
1 	. 	1 

1+& v g i 	1+ & y s i  

More compactly this table may be written: 

(2.14) 
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Repeating the above argument, if needed, we consider 
now the conditional probability of + in i, given + in 
either i or j (but not in both) 

(2.15) 	pt+ in il+ in either i or j,& 1J- 

s i/D 

 

E . 
1 

   

	

&(e. + 6.)/D 	&+ 6. 
Y 1 	j 	 1 	j 

for persons with the same parameter 

Again the conditional probability is independent 
• of the person parameter & II , and this implies that the 

persons may be chosen in any way we wish. It will easily be 
recognized that (2.15) is a special case of (2.12). 

Suppose we have: 

nij  = number of persons with + in either i or j 

aij  = number among the nij  with + in i 

Remembering that persons are presumed to answer independent-
ly of each other we have a pure binomial situation: 

/nij ) s i 	) j ( e i 	\bij 
(2.16) 	

i 

	

a j 	+6 
ai 

	

j 	i j 	ei+ei 

where 
.. 

	

lj 	
a 	. 
lj 

	

The best estimate of the probability 	 is: 
1 j 

(2 .17) 

	

a.. 	s 
13  

	

n. • 	F; .+E . 

	

ij 	1 

where =7::,', means "stochastic equality", i.e. equality, but 

for chance variations. ="will be used for approximate 
equality in mathematical sense (e.g. V2 

The equation may be rewritten: 

(2.18) 
a.. &. 
13 
 ti 	1 

b.. ijj 

According to our assumptions this relation should hold 
regardless of the population from which the n..ij  persons 
are taken. 

b.. 



We might for instance have two groups marked by 

' and ", differing in, say, previous education and then 

(i 
	

(6)" 
.-=.) should be "equal" to e j e j  

This points the way to regarding the problem of whether 
tests are "culture-free" or not as an empirical issue. 

For the utilization of (2.18) it is convenient to 
work with logarithms. Thus from 

a 
(2.19)lij = log 2-1` 	log E. - log e j b--ii  

it follows that 

log e h  - log 

(2.2o) 
	 log E i  - log 

log 	- log e h ;t1 jh  

0 	N 0 

whichleadstoestimatinge h :e i :e.and to a control 

on the model as well. 

This method,extended to a larger numbei" of items, 
has in fact been used in practice, but other' methods are 
more powerful. 

An approximative method based directly upon the 
definition (2.7) is the following; 

Consider nr persons with a9. = r. As they are likely 

to have parameters fairly close to each other we shall 
substitute all the & y 's by a common value & (r) - some sort 

of mean value of them - in (2.7) to obtain 

(r) e  
(2.21) 	0+1E (r) ,i 	fr 	 

	

2-= 	) i 	° 	
1+C

(r) e. 1+E' - 'e 

(r) 

nr 	kg le(r) 6 .1 ai ) 
(2.22) 	13ai(r)k\rili5 

(

(r)) 	C(r)

1 1  

E l ) rn  al 	(1+ 

we get the estimate 

Applying now the binomial theorem 
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a (r) 	(r) 

	

(2.23) 	a. ei 	n -a. r 	1  
nr 	

— 
1+ 	6 	nr 	1+ (r) e. & 	

i 	 1 

from which we derive the equation 

(r) 

	

(2.24) 	1(r)g n -a = log 

 

ac 
i  
(r) — log (r) + log e i . 
. r i 

In practice we first construct a table with the elements 

air)  

1 
° ° 

k 

41) (1) 	(1) a 	 a. 	4.. 1 	""" 1 

a (r)  
1 	Oe. 	 a. °°' 	4r) 

(r) 

a (k-1) 	al(ck-1) 

r 

(2.25) 

k -1 al  (k-1) .. 

n1 

nk -1 

and from this a new table with the elements l(r)  in so far 
as al(r)  . differs from both 0 and n which we shall to begin 

with assume is the case everywhere. 

For these elements and 

column-averages 1.(r)  and lY 

we have according to (2.24): 

it row-averages and their 
(' ) and the total average 1. 



(2 .26) 

111)xlog  C(1) + log e l , ...., 1 (1), log  t(1) +leg & i  ,... 	1
(1) 	13g k 

(1) +log s k  1.(1)  =log e (1) +log s 

l ( r 	log (r) + log (r) ( C (I) +log e i ,...,1kr)  
(r) +log s k  1 (.r) (r)+log 

(k-1) (k-1) (k-1) (k-1; 	 (k-1) (k-1) (k-1) (k-1) 
I, 	zlogs + log +log 	.1k 	log +log s k  1. 	slog +log e 

(*) 1, log () )xlog +log e i'° 	
-t +log e k  1 (-) zlog Z +log £ 
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where log and log S7  denote the averages of log e r) 

 and of log si  respectively. 

Deducting e.g. the column-averages from the first 

row we get 

( 
(2.27) 	/(1) -1 ( 	

1)
*) '=-log 	,...,/( 1)  1 	1 

(' 

(1) 
'000. 

from which it follows that on plotting the first row 

against the bottom row we should find a sequence of points 

clustering around a straight line with unit slope. The 
c0 )  

intersection with the axis estimates log 	. Similarly 

for all the other rows and also for the columns, the latter 
E A  

leading to estimates of log -=- 	i=1,...,k. One of the 

e i 's ore may be chosen as unity, 	then being estimated 

from 4 (') . The main point in the procedure is,however, 

that it implies a very severe check on the model, namely 

that provided the model holds we should get two bunches 

of parallel lines with unit slope. 

(2.28) 

lc . ) 
When some of the ai r)  equal 0 or nr , making  

(r) 

consider a rectangular subset w 	 o(r) alues. 

The averages thus obtained may then serve as a basis for 

collecting the rows and columns which were left out at 

the beginning. Items thus fitting the model we shall call 

conformal. Conformal items in some sense "hang together". 

In test construction the items should be "closely related" 

- for ex. not items in arithmetic and analogues in the 

same test. 

....,,, the procedure is slightly modified. First we 
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The method worked very well for two tests L 
(letter matrices) and N (numerical sequences), but for 
two other tests, V(verbal analogies) and F (figure com-
binations), straight lines were obtained,to be sure, 
however, with a variety of slopes. 

Why this disparity 	In constructing the items 
equal care was excercised in all sub tests in applying 
uniform principles for all items. However, during the 
construction generous time limits were given with the 
result that the raw score distributions for V and F had 
the following form: 

(2.29) 

Thus V and P were far too easy with unlimited time in 
contrast to L and F where the time limits chosen scarcely 
had undesirable effect. 

This was just one month before the tests had to be 
used, so what to do T There was no time for trying to add 
more difficult items. The easy way out was to put on more 
stringent time limits to V and F. After that the appearance 
of the raw score distribution was satisfactory, but this 
- of course - spoiled the  test, it was no longer a pure test 
of capacity, but contaminated with speed in solving the kind 
of problems. 

This suggested reanalyzing the data by grouping people 
according to number of items completed. For each working 
speed the results turned out very well and it was possible 
to estimate item parameters for each working speed. Further-
more we got the same ratio of s's for all working speeds. 

One of the lessons to be learned from this is: It was 
not  the model that failed 	the test construction certain- 
ly did t With sloppy test construction it is not to be 
expected that the model should work well 

Leaving now the approximate method a side and pro-
ceeding with the general development of the theory we 
consider nr persons with a y  =r and have to find the 

probability for their set of patterns (a v1 ,...,avk ),`) =1, 

nr , remembering that the individuals answer independently 



a11 	alk 	a21 	a2k 	
an 1 	an k 

E l 	°°°€k 	
6
1 	°"'ck 	

6 	r ...6 k r 

rr 
	

Yr 	 7r. 
(2 ,3o) 

r 	r 	
I a. 	k 6 1  1...6 k  a. 

(2.31) 	 = a. 1 	a.1 	Inr 
v r 
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We get 

0 (avl ,..„avk )1(a v , = r) 

= 14 ' 1 11 °°° %O ar = 

and on applying (2.12) to each term 

fq(av ve..avk ) l (av 	r)} 

P l anr1 	anr 
a  n .=rj 

a. 1 	a.k 
1 	* . ° F; k 

rr 

Whereas (2,12) gives the probability' of a specific 
answer pattern given the row sum,(2,3o) gives the prob-
ability for a set of answer patterns with a common row sum. 

Next we imagine all matrices with a y.= r and a 
fixed set of item marginals. All such matrices have the 
same probability since (2.3o) only depends upon item mar- 
ginals, not on the separate a vi . Therefore the probability 

of the marginals a. i  becomes 

where r  °°° r 	denotes the number of such matrices and a. 1 ...a, k  

may be thought of as some kind of generalized binomial 
coefficient. 

In principle it is possible from (2.31) to derive 
estimates of the 6's. These estimates will depend on r 
and on the number of persons that happened to have a v =r, 

but they will not depend on the person parameters, giving 
rise to a y. = r. 

Furthermore, - still under the proviso thnF the 
model holds - estimations arising from differen'. dues 
of r - small, medium or large - must give substl) ti i.11.y 
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(meaning: apart from chance variations to be accounted 
for by (2,31))the same results. 

This would seem to be a very satisfactory state 
of affairs implied by the model suggested: By definition 
the e's should characterize the items as such, irre- 
spective of which persons - within certain cultural limits -
they be applied to, (2.31) holding for every r demonstrates 
the possibility of obtaining inferences about the e's which, 
to be sure, utilize the results actually acquired from the 
collection of testees, but which are uninfluenced by which 
values their parameters might have. In that sense they 
are independent of the persons used. The inference about 
the e's depends on the known observations, not upon the 
unknown parameters, and statistically speaking the estimates 

• of their ratios are independent of which grodp of persons 
were collected for testing. 

Thus statements about the e's are available which 
are uninfluenced by irrelevant parameters, i.e.parameters 
that have nothing to do with the e's. 

This is our first case of what we shall call 

a specifically objective estimation of (or inference  
about) a set of parameters. 

Consider now the whole set of answers ((avi )), 

V= 1,...n, i = 	all of which are, according to 

the model, stochastically independent: 

Pf((api)) = Piaui 	600 p (alkf 

Pfani i 	P fanki 

(2,32) 

all all 	
a
lk 

a
lk 

1 6 1 	... C l 6 k 

71 1 	 71k 

and and 	
a
nk 

a
nk 

& n 6 1 	'Cia. 6 k 

7n1 	 ink 

i.e. 	 an. 	 a.k (2.33) 	
a1. 	 a.1 

0((aviW 	
1 	***n, 	• 6 1 *-6k  
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where for short 

(2.34) 	 = 1 + &yEi, D = 1;11 ii 
4 vi 

(2.33) shows that all matrices with two given sets 
of marginals (a l . ,.,. an ) and (a. 1  , 	a . k) have 

the same probability, Thus, in order to find the joint • 
probability Of the two sets we just have to count the 
number of (0,1)-matrices with the said marginals. Denoting 
this• 
number by [al. 	-n" 	we have: 

la. 1  nom CA/k 

(2.35) Pial . 	an . ; a 	a.k 1 

 

a 	 a. 1 , 1" 	, an' 	 a., 
"1 	"" "n 	. 6 1  .e.ek  

D 

1 
a. 1 ... a, k 

  

From this result we may derive the probability of the column 
marginalS by finding all a. i  that are compatible with the 

column marginals and add up the corresponding probabilities: 

Plal' 

 

a1° 	an ,  
- 1 °° 

  

al . ...an .] a. 1 	a.k 
a. 1  ..,a.k 6 1 * "k 

_J 

(2.36) 

  

     

 

D 	(a, 1° ..a. k ) 

 

al' 	an 
&

- 	

]. 	"""&n  d'(e l  ,.e 
D 

...an .), crayon 

Now divide (2.36) into (2,35) to obtain the conditional 
probability of the row marginalW given the column marginals: 

pfa. 1  „.a. k lal , ...an .} 

pfa l . .., an .; a. 1 	a.k} 

pal
. 0., an .j 

a. I 	a.k al . ...an . 	6 1 	." e k 
a. 	...a. 1 	lc; 	!'(el .. e k I al „ . 	an .) 

L_  

(2.37) 
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This result is a generalization of (2.31),showing 
in fact how the column marginals for different r's may be 
pooled for estimation purposes. (2.37) is just the probab-
ility distribution of their total and may serve as a basis 
for an estimation of the E's, utilizing all of the data. 
(2.37) being in this sense a synthesis of k-1 expresions of 
the form (2.31)(r = o and r = k are uninformative) preserves 
of course the specific objectivity of the estimation. 	• 

From (2.35),we might have derived the probability of 
the row marginals: 

(2.38) 	Pfael'—'a°0 

a °1 	a. k 

	

_ a l "° a k 	
° 

D 

and obtain a conditional probability symmetrical to (2.37) 

(2.39) 
r_ al . an" a,.,...,an" 	c l 	°°° & 11  = 

i (c 1'°°°' c ri )a °1'°°°' a °k )  

which yields an estimation of the persons parameters that is 
also specifically objective, i.e. unaffected by the unknown 
parameters of the items. 1 

Let us finally divide (2.35) into (2.4) to obtain 
the conditional probability of the whole set of answers, 
given the total number of correct answers for each person 
as well as for each item. 'nearly all of the parameters 
cancel and in consequence the said conditional probability 

(2.4o) 	0((a vi ))1(a y .),(a. i )i = 
i )  

becomes independent of all parameters. This result is parti-
cuiarly interesting. The structure of the model is specified 
by (2.1a) and the stochastic independence and it is the same 
whichever values the parameters take on. Thus an inference 
about the adequacy of the model as such showed, in order to 
deserve the qualification "specifically objective", be inde-
pendent of all of the parameters. (2.4o) shows that this 
must in fact be possible even if it is not immediately clear 
how to do it. 

If we had a large number of observed matrices with 
the same marginals (a y .) (a..) the matter would be "easy", 
all realizations of the matrix having the same probability. 

a. 	a l '°°°' °k 
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The principle of the problem would be the same as 
testing the equiprobability of the aix eyes of a 
dice from, say, loo throws. 

This of course is not feasible. On the face of it 
we should have just one observed matrix ((a ))i )) and 

this could in no way be exceptional, since according 
to (2.4o) all (o,1)-matrices that are algebraically 
compatible' ith the given marginals are equally 
probable-however systematic or randomized they may 
look. 

However, the derivation of (2.4o) does not pre-
suppose that all data available were used. Just the 
same formula would hold for any part of the material. 

Thus we may, according to any criterion we like, 
partition the n persons into a number of groups, 
IL= 1,... m : 

(2.41) 

i 
4 1, 	... i, 	... k total 

1.1 

1.n 
1 

a (1) 
11 	'°"°' 

a (1) n1 1' ° ° ° ' 

(1) 
ali : '°"" 

(1) 
an1 i' — • ' 

O (1) 
r'lk 

(1) 
'n1  k 

0 (1) 
1. 

9, (1) 
nl. 

1. all) (1) '(1) a(1) 

,14.1 

J.c.n u, 

) a (A 
-11 	'""' 

a ( '`° ,°.., njul'° 

,G" ) 
-11 	'°°°' 

a ()t0.., 
11..0.1 

,(/"' 
-lk)  

JAL) n„k 

a1 cA) 

a(/") 
n 

A° 

P. a ('14') 
.1 	' ' ° ° ' 

,(/) 
— oi 	' " " ' 

„,(1)4 
 `-' 	1c a ('4(..) 

M.1 

m.nm 

a(M) 11 	9 ^ , . f 

a (m) nml'°°°' 

n (m) —11 	, • soy 

anmi'°—' m 

„(n) - 1k  

() am 
nk m m  

a(m) 1. 

a(m) n  

m. a(m) 
el "," 

a(m) , 
—ei "." 

, (m) 
-.k a(M) 

total a(*) 1 	'°°°' 
„(*) 
- i 	'°°°' 

(°) 
a k a(*) 
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For each group (2.4o) must hold: 

(2.42) 	1:4(a (ui" ) )1(a ll (1") ) 

---(a v(A4) ) -  
. 

(a ("“) 

a (14')  

( i ) 	1 

(Ei9e.., 6 k1(a 1) (147—  

Thus from each group we might estimate the e's, 
but provided the model holds for all of the groups 
these estimates should not deviate significantly 
from each other. We shall, however, now show that it 
is possible to decide - whether or no they do so, with-
out actually carrying out all these estimations. 

Due to the stochastic independent- of the blocks 
the simultaneous distribution of the m sets of item 
totals, given the m sets of person totals is the 
product 

(2.43) 	Pi((a ( 1_4) ))1((a ) )).1 

m 	Ga) 	Gu ) 
= 	pi(a i))1(a 

/4 1 	1) " 

  

a (.) 	a(.) .1 	... 	.k 
k i 

 

77' 	vo 

/1,=1 a (t.)  .1. 

  

 

k l(a (,;4" )  )) 

    

However, the total column sums of the table (2.41) 
are the same as if the persons had not been grouped, 
and therefore we also have according to (2,37) 

(2.44) 	1:4(a (i ) )1((a ) ))1 

r  

Obviously, the 6-products in (2.43) and (2.44) 
are equal, but the denominators are in fact also 
identical. 

a" 	a( ' )  

	

((aye)) 	. 	6 1
.1 	

°°° 	61:k  

	

(aY) 	7(61,... ckl((a (; )  ))) 	* 
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This is a consequence of a general formula, 
now to be proved, which expresses any 1-function 
in terms of the elementary functions' y or 	K 
In deriving (2,31) we applied (2.12) to each of nr 

 persons with the same a
y.

, but the argument remains 

the same if they differ. Thus in analogy to (2,3o) 

(2.45) 	Pl(avIj.„ aVk 1(ay,e
)} . 

all 	alk 	anl ank 
6 1 	°"°6koe.. e 1 	k  

no 
a
.1 	

a
.k 

e
1 	...sk  

Tr 
 

(v) 
7 
 aV° 

from which we get by summation over all matrices ((a vi )) 

with the same two sets of marginals 

(2.46). 	p 	 a .k l(ap ) 

(a .i ) 	( 7v7")  

and on comparing with (2.37): 

	

(2.47) 	(6 1 9 ,...E k l(a y. )) = 	
' 00 ° 6 k ) ° 

From this formula it follOws that each term in 
the denominator of (2,43) may be expressed as the product 
of the elementary 7r-functions corresponding to r-values of 

a Ga) , V= 1,... np. Compiling them for /0 = 1,.., m we get 
V. 

just the terms making up the product representation of 
the denominator of (2.44), Therefore, as stated above, 

(2.48) 7(c i ,...s k l((ar))) 

m 
- 7( 	 P_ 1(n 	/4) )) 

11 1 	" -1 	
(

" 

We may now draw the conclusion aimed at, that the 
probability of m sets of item marginals, given the m sets 
of personal marginals conditional upon the set of total 
marginals for the items, as obtained by dividing (2.44) 

a .1 	a (a 	) 	s 	.. E 
.k 

= 	v. 	1 	° 	k  
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into (2.43) is independent of the e's: 

(2.49 ) 	pi((a ( ; ) )) I (( ar)  )),(aC; ) ) 3 

This formula is a generalization of (2.4o) to which 
it reduces. when each group consists of only one person. 

From another point of xyiew (2.49) may be considered 
as an elaboration of (2.4o) ), producing consequences 
that are useful for testing purposes, 

x) It may in fact be derived directly by repeated applica-
tions of (2.4o) without returning to the g's: 

P{((a (V))I((a ) ))9(a ( ; ) )) 

14((a ( it) )),(a ( i ) )1((aVt) 	)1  

P((a ( i ) )1((a („0/14)  ))1 

since (a ( ' ) ) is determined algebraically from ((aC g) )) 

Pi,((a (1 ) ))9(a ( 1 ) ) ( ( a ()f ) 	= Pi( (a Gr)  )) ((a ())1. )  )) 

On multiplying numerator sad denominator by 

P i( ( (a (YV ) ) ) I ( (a 1V,4)  ) ) j we then get 
0((a (V))1((a ) )),(aY)i 

11)(((c1 j,V))) I ((a. ) )),1" 	Pf(a ( i ) ) I  ((a,V. 
p{(((a v ) )))1((a (vA: )) 3 	P ((a`r) ))1((ET ))j 

( (41_ ) ))) I ((a 1(:) )) 9(a ( i ) )j 
rur-- ( 

0((aYi l))1(aV''),(J.V)1 
which on applying (2.4o) to each of the groups as 
well as to the total material yields (2.49). 
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Another elaboration of (2,4o) obtains when the 
items are partitioned into a number of groups, h = 1,..,1. 
Formally the result is perfectly symmetrical to (2.49) 

(2,5o) 	pl((a 1) )) I ( (a (li1) ) ) , (a: ) )1 

(h  
((a

)
v. 	)) 

«a(. 11 ) » h=1 

In practice there is the difference that usually 
persons are numerous and items relatively few. 

Having chosen the groupings the control on the model 
has now been reduced to a matter of ordinary statistical 
testing technique based upon a study of the bracket symbols. 
At which point we shall leave it here. 

But how to choose the grouping . Our formulae allow 
for any grouping desired. This state of affairs leaves a 
great deal of freedom to the statistician with the risk 
of the model-testing being at the mercy of his personal 
preferences. 

This is a matter that deserves more attention than 
we are able to give it here, But I may tell something about 
my own leading star. 

My point of departure I take in the statement that 
models are never true and they are not meant to be so. 
This point may be illustrated by the case of the pendulum. 

. 	The simplest model in this case is the "mathematical 
pendulum": a heavy point fixed to a weightless string and 
swinging frictionless in vacuum. 
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