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The present paper does not pretend to offer substantially 

new results. The background for delivering it is that when 

building up a rather general class of models and attempting to 

exploit them in statistical practice, I ran into a class of 

combinatorial coefficients which resisted my efforts. But not 

being much experienced in combinatorics I may very well have 

overlooked even easy ways out. When now submitting my problem 

and my tentative approaches to it for discussion, I hope to 

get some orientation in the matter. 

1. The main difficulties already show in the simplest 	cas 

which arise in connection with intelligence testing in psychology. 

A large number of persons are exposed to some 2o questions 

to each of which the answer is either correct (+) or non-correct 

(-). For reasons discussed elsewhere I assume the probability 

that the answer of person no. -4 to item no. i is correct to be 

of the form 

rJ+ 1‘1, i) 
	

' 	i=1,...,k 

where v andare parameters characterizing the persons 

(their "abilities") and the items (their "easiness"), respec- 

tively. Writing 

1 for +answer 

a.Nii = 	0 for -answer 

the model may be written 
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(1.2) 	P 
+ yi  

Assuming stochastical independence between the answers of the 

persons to the items the joint probability of the whole matrix 
of answers 

becomes 

(1.3) 

where 

A = (a,41. ) 

p{Al _ (i) Y  (1) i  

'quo+ 

a 	= 	. 	 .2-2, a nti Ve 	11 , aoi 	, i=1 a 
	

v=1 

are the total numbers of +answers for each person and to each 

item, respectively. 

With the notations 

	

o = (a1o"'" ano ) 
	

= (a o1 7— " aok )  

":"-- • 	= ( 	
1 • 
	

( E 	£ k ) 

r a lo 	.s ano 	 aol 	aok 
"' )n 	7 	 = 6 1 	- 	€'1c 

?.c E ) = it 11 ( 1+ %% NI  Ei ) 

(1.3) is simplified to 
,40 * 

(1.4) 	p{Ak - ro 
 

e) 

Obviously the joint distribution function of the exponents 

is 

 

A*o d o i? * 7:77.   

  

(1.5) 	P .t 0 ,.410*} = 
*o 

   

where the bracket symbol represents the number of (0,1)-matri- 
ces witli themargirma surns(a‘Idand(e

oi ). On dividing "  
(1.5) into (1.4) we get the conditional probability of the set 
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of answers, given the marginals: 

(1.6) P 1 A I d' *o' 	- 	1  
14 01 
40*.i 

which is independent of the parameters. Thus A *0  and 4n* 
are sufficient estimators of :ET and 

Furthermore, summing over ,go*  in (1.5) we obtain the .  
marginal distribution Jit-40 

4 ( E ) 

P ( 7--7*  0'6 ) 
(1.7) 

where 

uo ( E ) = c14:: )  (1.8) 

and on dividing this into(1.5) we get the probability of the 
item totals, given the personal totals: 

(1.9) 
i*0 

P 4.40*1 ,4* 01 	Jo* 

F 4o* 

which only depends on the item parameters. Symmetrically we 

have 

(1.1o) 	p 4*o 443 = 	0* 

The decisive feature in ,the formulae(1.9) and (1.1o) is 

that in principle they render it possible to estimate and 

otherwise appraise the item parameters independently of the 

person parameters, and the other way round. 
We may even proceed a step further. Considering two 

groups of persons, selected in any way desired - no randomiza-
tion being required - we wish to test the null hypothesis that 

the same L's apply to both groups. Under this hypothesis the 

joint conditional probability of the two sets of totals for 

items() 	r(2) 
o* 	and 4o* , given the two sets of totals for 

persons 	°) 	*0  4(1)  and 4 (2)  , is 



n(1) 	2) 

,4?(0 2, ) 	(6 ,2) 

( 1 ) 	(21-  
*o 	*o - 
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(1. 1 1 ) 

p14(1* ) 4(2) 
r0 	* 

(1) )2(2) 
*0 "**0 

Y44 5"  
0(11 	°  ( 

n* 	
, 

   

   

New poole the two groups. Clearly the vector of the totals for 

the persons is just 

,2 	= (c (1) 
*o 	*0 16  

and any possible vector of totals for items ( ./Q 	must be the 

sum of two possible vectors, one for each group: 

0* = 000V+4! )  =AT 

Therefore our bracket symbols must satisfy the addition rule 

(1.12) 	 = 
(o) 	 L.....j  J/(1) 	(2) 

_ 0* 	
o* 	, 	0* 

L_ 

the fixed sum c ' ( 0) . Accordingly also 

u.. o*  -4(2 where the summation extends over 02 (1)Is and 	) 's with 

o* 

(1.13) (E; ) = or (1) (E ) F ) (2) ( - 	• 
*o 

( ) 

) 

Thus 

(1.14) P 1;J 2)(0C )  102 ) ) )) di (02 )  

_0(0) 
E -Am 0* 

YcekoCEI 

    

divided into (1.11) gives 

(1.15) 	P1/40( 41 ) , (0! ) 	 o° )  

In consequence the test aimed at is independent of all 

parameters, the E 's included. 
At this point you may recall R.A. Fisher's so called 

exact test for comparing relative frequencies governed by 

binomial laws. 
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It leads to a non-parametric hyperrgeometric distribution 

(1.16) 	p{al' a2 lao'nn2 1 	
1" e /  

( no) 

Here, however, we are fairly well off. For one thing the 

mean value and other moments of a 1 for given ao are readily 

available, e.g. 

aon 1 
7111A a ll ao' n 1' n2 	= no  

Moreover, logni being rather extensively tabulated and 

log( 121) to some extent, and on top of that good approximations 

being available, it is often an easy task to compute the single 

probabilities (1.16) and even sums of them. 
But what about (1.15)? Could we find explicit - and manage-

able - expressions for ii 	(1) /3(o) tin 
P"'"o* vy,o* '*o 	? Or is anything 

else known, for instance asymptotic properties which would make 

the computation of test probabilities feasible ? 
Of course the addition rule (1.12) may be helpful. In par-

ticular we may notice that if the second group comprises one 

person only, with r correct answers, then the coefficients 

H 2)] vanish except when 4 (2)  consists of 1 in r 

r  places and O's elsewhere in which cases 	i7(2) = 1 . Thus 
c)* 

we get a simple recurrence formula 

   

114(1) 
0 

o* --  1" 

   

(4$, 10 ) 	 ) 

so* 

  

  

  

   

    

where A 	 stands for the said structures of 4 (2)  i 	i 	 o* 1" r 
and the summation extends over the field 1<i 1 <...<ir<k . 

By means of this recurrence formula it is easy to compute 

the bracket symbols in case of a few persons. But in most data 

available the number of persons ranges from loo to l000 or more. 

ao 
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Generating functions may also be helpful. There are at 
least two of them. 

According to (1.5) we have 

(1.17) *E = Tirrf (i+tei ) = 64 *o cile 

for arbitrary = and E 	Increasing the number of persons 

and/or the number of items is suggestive, but leads to no more 

than the addition rule (1.12), I think. (1.8) is another gene-
rating function as the left hand term may be evaluated by means 

of (1.13). In fact, we may split up the group of persons con-

sidered according to ?yo  . Denote the number of persons with 

avo=r by cr (r=0,1,...,k) then it follows from (1.13) that 

4 
(1.18) 	ja4,0 (E 	Yo° (E 	 Kkk (E) 

where 	",(E) is defined by (1.8) for one person. In that 
case G o  is of the form 	 mentioned above, so 

1' ' • i  r 
ff.1„(E) is the elementary symmetrical function of r'th order 
for ^, 1 Ek 	defined by 

(1.19) 	 22, ,Yr (E)xr  = rif ( 1 +  Ell() 	•  
r=o 	 i=1 

In particular a/  (6)=1 . 
If the coefficients, in the development of 4 C (E) 9 

were known or readily computable, a composition in accordance 

with (1.18) might be within reach for not to04 large k . But 
is anything known about these coefficients ? What, for instance, 

happens as c--)'24",  ? 

2. In general more than two responses are available, but 
in many practical cases the number is finite. In that case the 
model (1.1) is readily extended to 

( 2 1 ) 	p x 	) ,>) 	tyff 	 = (g( 1 ),..., (m)) 

= ( E (1) 	Elm) ) 

in which we have for each possible answer x ( -) assigned a 
parameter (//A)  to any person and a parameter E /1"1- )  to 
any item. 



Thus .introducing -  the parameter matrices 

11. = 
--1 
•. • 

Mni 

1 \  E 
, 	( . • • 

`10 

II:: 44011-  E, 
i“ Al 	(4 ) 	(I)  

* 
Nxi) 

the probability 
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Denote by 41 . 1 the selection vector (0,...,1,...,0) with 
m-1 0-elements and a 1 at the i.A-th place if x ( t°  were the 

, observed answer of person -4 to item i . Then the model may 
be recast into a form analogous to (1.2): 

,.)M c  44,41 
(2.2) 	p 1,4 	- 	 . 

c 
`' i 

and the whole argument runs perfectly similar to the previous 

case. 

and the matrix build up by the totals of the selection vectors 

per person and per item 

410 
A*o = 	. . 	, Ao* = 

no 

we get for the matrix whose elements are the selection vectors 

observed 

• 

4ok 

(2.3) 

AA4  - 0 E 
y  E) 

From this we derive 

* Y A0*1 

--A*o zA*o A o* 

Say. 



(2 .8) P { A IA*0 ,A0*  - [A  
1 

*o 
Ao* 

10o. 

where the bracket symbol - now with matrices inside - denotes 

the number of selection-vector matrices with the marginal total 
matrices given . 

Furthermore with the notation 

(2.5) 

we get 

(2.6) 

and 

p 

A*0 ( E 

L* 0
1 

A o 

o 	

] 

rA ") [ Ao* 

A o 
'A 	( „ 

A  

° 

e  ) 

, 	) 

(2.7) P Ao*I A*ol 

	

rA 1 	E A0* 

	

A0 J 	( E. ) 
0  

as well as the symmetrical formula. Of course also 

The analogy to (1.15) also holds but I need not elaborate 

The generating functions are 

(17: , ) = 	TIE 	(P) E 1-4 ) 
( -0(i)- (tA) -4 	1  

A*0 
Ao* 

X A*0 ( E ) = Tr( 6,( E )) en  

where ca  denotes the number of row vectors in A *0  that 

equals 	, i.e. the number of persons with a given total TL 

of selection vectors. The 21R( )'s are generalizations of 

the elementary symmetrical functions and they may in analogy tc 

(1.19) be defined by the expansion 

that. 

(2.9) 

and 

(2.1o) 

.E 11 
(A*0 )(A0* ) 

A*0 E Ao* 



IT Ti-  ():1 (P ) - ( 1.0 ; ) 1vi 
(/)(i) 	0)g v 	-Vi' 

( 	 IT (.4 )( i ) l vi  1 
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m 	( ) ()
) 

 

= 7(E i X* ) 
i=1 	p,=-1 1=1 

(2.11) 

= 	xn(S )3( y.--( ( 1 ) 	x(m) 
(R) _ it 	- X 	10.0,- 	) 

3. So far everything is analogous to m=2 . However, 

when generalizing even further,a sort of symmetry principle 
emerges. 

Let person no.V be exposed to item no. i a number of 
times lvi  . Then we get similar distribution functions depen- 

ding upon coefficients (A*o  ,Ao  *) , generated by 

(3.1) 	 =II TT (17: ,6 i ) 19i  r 
(y)(i) 

) 	
A*0o* 

= o o* =  (A*0 ,A0* ) 
t7L 

.Now multiply this function by 71 	LI denoting the product 
117 	, and sum over all non-negative integers for the, 

1Vi 's . Then we get 

1 /A:, 	 A* 0  e 0  * ZL 
( A* o IAo*' 101'1\ °

9 

 A°*1  

( 7  2 ) 

1,()  = 
(L) 

= exp ( F, 	EcP)  5 . 
43. 

 ) 
( v , i,p ) 	 -  

in which the 	, & and 	's occur symmetrically. There- 

fore, by exchanging the role of the 	with that of the 	ts 

or the Cs we shall get the same expression and this fact 

implies that the coefficients 
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A*0  
1  (A A 	- 1  ( A L 	*o 0* - 	I I  'o* -* o  

( 3.3) Ao* 
- 1  (A L -  A ' 	o" e" 

are symmetrical in A*0 ,A 0*  and I, . 

To interpret it: In this context the numbers of specified 

answers given by each person, the numbers of specified answers 

given to each item and the numbers of trials applied to each 

combination of person and item are exchangeable. Psychologically 

this sounds peculiar, but I do not think there is more to it 

than a purely algebraical relation. Even so it seems remarkable 

that determining the coefficients in the develApments of the 

three products 

(3.4a) 
v=1 i= 
Tr Ti 	x y  c1-0) ` vi  v 
n k 

(3.4b) 

 

k .11 (.21 
x 
c zvi  u) 	) b? 	and 

° 2_ v  
i=1.,=1 v=1 

(3 .4 c) 
891.) 

`TI z 	-("4.4)) 77.  
v=1ik=1‘i=1 vi  

are equivalent problems. I wonder whether it may be related to 

known duality principles in combinatorial. Anyhow, the symmetry 

(3.3) looks promising, but so far I have had little luck in ex-

ploiting it. 

4. In conclusion I may add a few words about the perspective 
of my subject. 

In the presentation of my problems I have referred to a 

psychological situation of a somewhat special kind, but the type 

of models described covers a much larger field. 

To see that we may apparently specialize (2.1) in order 
to meet the demand that a model should not depend on too many 

parameters. 
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If we introduce logaritmic versions of the parameters 

G (/'") = log (I4-)  6'. log E. c/4  
1 

(4.1) 

   

e=  ( g (1) 	, g( ) 9  .9. 	m  

 

(1) 	Ti) i , • • • Ti 

the model takes the form 

   

 

Q (A'') + cr C/4)  

  

(4.2) 	464) 11, 04 	e 	 
(e, Z) 	9  v   

 

 

and now we may in actual cases ask whether it is possible to 

reduce the number, m , of parameters per person and per item 

(apart from the trivial reduction to m-1 ). 
The simplest case would seem to be that each person as 

well as each item is fully characterized by a one-dimensional 

parameter, 8 1)  and cri  , respectively, and accordingly that 

the responses x9')  are measured in metrics which are inde-

pendent of the situation: 

(4.3) 	8i!) /4)  = 8 ufcP") +Gcc4) , 4ri/4)  = 0-0,J")+0(/‘) • 

The model is then reduced to 

g (P.) 	IP ("14 OA)  
(4.4) 	p {x (t") } - e 	

 

which turns out to be a particular version of the discrete 

case of Darmois-Koopman's exponential distribution type. 

Of course Qv and Cr i need not be scalars, they may be 

vectors, in which case the products just have to be interpreted 

as inner products. 

In this form the model appears to be as flexible as to 

cover almost every known field of statistical analyses where 

static models are indicated, and it has actually been employed 

in biology, psychology, sociology, demography, economics, and 

linguistics. 

Therefore, to reach at a mastering of an adequate testing 

apparatus is urgent, and therefore I shall be grateful for 

suggestions that may lead to further progress. 

6  t/ta.) = d. y.t.) +4t4.) 
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