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THE IDENTIFICATION OF STRUCTURAL CHARACTERISTICS' 

BY T. C. KoOPMANS AND 0. REIERS0L 

Cowles Commission for Research in Economics 

1. Introduction. 

1.1. "Population" versus "structure." In a fundamental paper (Fisher, [1]) 
R. A. Fisher distinguished as the first group of problems in mathematical statis- 
tics the "specification of the mathematical form of the population from which 
the data are regarded as a sample." It is the purpose of this article to suggest a 
reformulation of the specification problem, appropriate to many applications 
of statistical methods, and to point out the consequent emergence of a new 
group of problems, to be called identification problems. 

In many fields the objective of the investigator's inquisitiveness is not just 
a "population" in the sense of a distribution of observable variables, but a 
physical structure projected behind this distribution, by which the latter is 
thought to be generated. The word "physical" is used merely to convey that 
the structure concept is based on the investigator's ideas as to the "explanation" 
or "formation" of the phenomena studied, briefly, on his theory of these phe- 
nomena, whether they are classified as physical in the literal sense, biological, 
psychological, sociological, economic or otherwise. Examples of such structures, 
drawn from the fields of economic fluctuations and of psychological factor 
analysis, are given in sections 3 and 4. More detailed discussions of these exam- 
ples can be found in other publications by the present authors and by others 
[15], [19]. In this article, we are therefore not concerned with the merits of par- 
ticular assumptions entering into the specifications considered. Our examples 
are used only as the basis for a generalizing formulation (Section 2) and a com- 
parative discussion (Section 5) of the identification problem, i.e., the problem 
of drawing inferences from the probability distribution of the observed variables 
to the underlying structure. The belief is here expressed that this is a general 
and fundamental problem arising, in many fields of inquiry, as a concomitant 
of the scientific procedure that postulates the existence of a structure. 

The general formulation of the identification problem in Section 2 is, there- 
fore, held abstract. Some readers may prefer to give substance to the various 
concepts by reading Sections 3-4 alongside Section 2. In addition, we insert 
here a simple example showing the main features of the identification problem. 

I To be included in Cowles Commission Papers, New Series, No. 39. The authors reported 
on this study in papers before the Berkeley meeting of the Institute of Mathematical 
Statistics in June 1948. We are indebted to Dr. G. Rasch of the University of Copenhagen 
and to Professor L. L. Thurstone of the University of Chicago for many fruitful discussions 
on the subject matter of this article, for which the responsibility lies exclusively with the 
authors. 
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1.2. A simple example of the identification problem. This example is concerned 
with the problem of estimating the parameters a, f, of a linear relationship 

(1.1) 12 -a + On, 

between two variables fi and ?72 both of which are observed only subject to 
errors of observation u1 and u2. Thus, observations are available only for the 
variables 

(1.2) Yi = vli + ui where E(ui) = 0, i = 1, 2. 

The question under what conditions a consistent estimate of 3 exists has 
repeatedly attracted attention. To discuss this question, we shall consider a 
model in which n7 is independent of (ul, u2) and in which the joint distribution 
of u1 and u2 is normal. 

If also the distribution of 77, is normal, it is easy to see that ,B cannot be deter- 
mined from a knowledge of the joint probability distribution of the observed 
variables y, and Y1.2 In this case the joint distribution of y1 and Y2 is also normal 
and the distribution is completely characterized by five parameters, E(y1), 
E(y2), var (y1), var (y2), and cov (Yl, y2). The parameters ,B and var (f71) may 
now be chosen in any way such that the second term in the right hand mem- 
ber of 

[var (y1i) cov (yl, Y2)1 2 va ? [ var (u1) cov (u1 , U2) 

L COy (111,112) var (12) i Lfl (J var 1 Lcov (Ul , U2) var (U2) j 

is a positive definite matrix. It is clear that if the left hand member is non- 
singular, this condition can be met for any arbitrary value of ,3 combined with 
a sufficiently small value of var (771). 

It can be shown that ,B is uniquely determined by the joint probability dis- 
tribution of y, and y2 if this distribution is not normal. We shall prove this in 
the case that certain semi-invariants exist.3 

Let V lY2(tl , t2) denote the characteristic function of the joint distribution 
of y, and Y2 

(1.3) 4Y1Y2 (tl, I4) = (ey' itlY2it2 

and let 

(1 .4) 4V1YM( It t2) =log OYlY2 (tl,7 t2) - 

Similar notations will be used for the characteristic functions of other random 
variables, and the logarithms of these functions. 

Since (u1, U2) and (71, 772) are independent, we obtain 

(1 .5) 4 . Y2(tl )t2) = ./712t (s t2) +4'11U2^(t1 It2) 

2 See [13], middle of page 70. 
3The following proof is analogous to that given by Geary [81 in the case when the u's 

are not supposed to be normally distributed, but independent. 
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and from equations (1.1) and (1.3) we obtain 

VIV2 (tl, 2t2) 
= 

E(en1it1+(a+P?i1)it2) 
or = e 021c(tl + it2), 

or 

(1.6) {P172 = ait2 + {t1 (tl + it2). 

Combining (1.5) and (1.6), we have 

(1.7) 4-1YV2(t1, t) = Cdt2 + 4",7(tl + At) + PuiU201 , t2), 

where #,U1U2(th, t2) is a polynomial of second degree, since the joint distribution 
ul and u2 is normal. Let K78 be the semi-invariants of the distribution of (Yi , Y2) 

and let K7 be the semi-invariants of the distribution of n1 . Comparing coefficients 
in equation (1.7), we obtain 

(1.8) Kr. = #Kt+# (r + s 2 3) 

and from this equation again 

(1.9) Krs = I3Kr+1s8-1 (r + s > 3, s > 1). 

If at least one K,8 with r + s > 3, is finite and different from zero (which 
implies that the joint distribution of y, and Y2 is not normal), 13 may be deter- 
mined from one such equation given the joint distribution function of y, and Y2 . 

1.3. Remarks on the history of the identification problem. The identification 
problem has been discussed, in various terminologies and formulations, by 
quantitative thinkers in several fields. It is interesting to note that most of the 
contributions have come from researchers whose main attention was directed 
to particular fields of application. For this reason, perhaps, its general formula- 
tion was not attempted until recently. 

In economics, contributions of increasing explicitness and generality were 
made by Pigou [18], Henry Schultz [20], Frisch [3], [4], [5], [6], [7], Marschak [17]. 
The main contributions to the formalization and explicit mathematical analysis 
of the problem were made so far by Haavelmo [9], Koopmans and Rubin [15], 
Wald [24], and Hurwicz [10]. 

In his books on factor analysis [21], [22], Thurstone discusses in several places 
questions of identifiability. Previously the lack of identifiability in a certain 
factor analysis model had been demonstrated by numerical examples by G. H. 
Thomson [27]. Models used in the analysis of latent structure in attitude and 
opinion research by Lazarsfeld [16] give rise to similar identification problems. 
In biometrics, the "method of path coefficients" of Sewall Wright [25], is essen- 
tially a method where a structure is postulated behind the observable distri- 
bution, and the identifiability of that structure discussed. The identification 
problem is also met with in the theory of the design of experiments, particularly 
in the method of confounding (Fisher [2], Chapter 7, Yates [26]). When con- 
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founding is used, the identifiability of certain parameters (second order inter- 
actions, say) is sacrificed in order to gain certain advantages in the testing of 
hypotheses concerning (and in the estimation of) the parameters that remain 
identifiable (main effects and first order interactions, say). 

2. General formulation of the identification problem. 

2.1. Latent variables, observed variables, and structure. In each of the examples 
considered in this article, the distributional specification applies directly to 
certain non-observable or in any case non-observed variables, variously referred 
to as errors of observation (like u1 and u2 above), disturbances, "true" variables 
(like s1 above), specific factors, etc. We shall refer to these as latent variables, 
denoted by a vector u. Ih addition, certain structural relationships-like (1.1) 
and (1.2)-are specified which connect the latent variables with the observed 
uariables, denoted by a vector y. The specification is therefore concerned with 
tne mathematical forms of both the distribution of the latent variables and the 
relationships connecting observed and latent variables. 

The term "mathematical form" carries a suggestion of parametric specification 
which obviously is not the only possibIe type. We shall therefore employ terms 
and concepts introduced by Hurwicz [10] which cover both parametric and non- 
parametric specifications. By a structure S - (F, 0) we understand a particular 
probability distribution function 

(2.1) F(u) 

of the latent variables-thought of, if you wish, as given numerically to a 
desired degree of accuracy, either by a cumulative distribution surface or curve 
or table, or parametrically by numerical values of the parameters-combined 
with a particular structural relationship (or set of simultaneously valid rela- 
tionships) 

(2.2) q(y, u) = 0 

between observed and latent variables-again given numerically by curves, 
surfaces or parameters-which permits unique determination of the observed 
variables y from the values of the latent variables u (except possibly for a set 
of u-values occurring with probability zero). The corresponding probability 
distribution 

(2.3) H(y I S) 

of the apparent variables is therefore uniquely determined by the structure S, 
and is said to be generated by S. 

2.2. Specification of a model. We shall use the term model to signify a set of 
structures. We can thus say that the specification problem is concerned with 
specifying a model4 e which by hypothesis contains the structure S generating 
the distribution H of the observed variables. 

4A set will be denoted by a German character corresponding to the Latin character 
denoting its representative element. 
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As a result of this reformulation of the specification problem, a new problem 
of inference arises, which logically precedes all problems of estimation or of 
testing hypotheses. It has already been deduced from the definition of structure 
that a given structure S generates one and only one probability distribution 
H(y I S) of the apparent variables. However, statistical inference from any 
number of observations can relate only to characteristics of the distribution of 
the observed variables. The limit of statistical inference is an exact knowledge 
of this distribution function, a limit not attainable but approachable if very 
large samples can be taken. Anything not implied in this distribution is not a 
possible object of statistical inference. 

2.3. Identifiability of structural characteristics by a model. It is therefore a 
question of great practical importance whether a statement converse to the one 
just made is valid: can the distribution H of apparent variables, generated by a 
given structure S contained in a model S, be generated by only one structure in 
that model? This is by no means implied in the definitions given, and it is not 
generally true. Whether or not it is true in a particular instance depends-as 
illustrated in our examples-always on the model (, and often on the given 
structure S besides. If it is true, we shall say that the model e identifies the given 
structure S, or that the structure S is identifiable by the model.5 

If a structure S is not identifiable by a model S, some of its characteristics 
may still be uniquely determinable. By a structural parameter @(S) we under- 
stand a functional of the structure S. (This definition applies, of course, equally 
to the case of non-parametric specification of the functions F, O defining the 
structure.) We further define that two structures S and S* are (observationally) 
equivalent if they generate the same distribution of observed variables, 

(2.4) H(y I S) = H(y I S*) for all y. 

We then say that a model S identifies a parameter 0(S) in a structure SO, 
if that parameter has the same value in all structures SO*, contained in S and 
equivalent to So. This definition can obviously be extended to characteristics 
x(S) of a structure 5, other than parameters, such as the functional form of a 
relationship represented by a component of the vector X, etc. 

2.4. The identification problem. It has now become clear that our reformulation 
of the specification problem has given rise to a new group of identification prob- 
lems: to determine which of the parameters or other characteristics of a given 
structure are identifiable by (or "within") a given model. 

It is perhaps premature to attempt assigning to identification problems a 
definite place in a classification of statistical problems such as was undertaken 
by Fisher. One might regard problems of identifiability as a necessary part of 
the specification problem. We would consider such a classification acceptable, 
provided the temptation to specify models in such a way as to produce identifi- 
ability of relevant characteristics is resisted. Scientific honesty demands that 

I The concept here designated briefly as "identifiability" has been called "unique 
identifiability" in another context (Koopmans and Rubin [151, also Hurwicz [101) in- con- 
trast with "multiple" or "incomplete" identifiability. 
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the specification of a model be based on prior knowledge of the phenomenon 
studied and possibly on criteria of simplicity, but not on the desire for identifi- 
ability of characteristics in which the researcher happens to be interested. 

Identification problems are not problems of statistical inference in a strict 
sense, since the study of identifiability proceeds from a hypothetical exact 
knowledge of the probability distribution of observed variables rather than 
from a finite sample of observations. However, it is clear that the study of 
identifiability is undertaken in order to explore the limitations of statistical 
inference. 

2.5. Identifiability is subject to statistical test. Further interpenetration of the 
pre-statistical analysis of identifiability with problems of statistical inference 
proper arises from the fact, amply illustrated by our examples, that the identi- 
fiability of a structural characteristic x(S) often depends not only on the model, 
but also on the given structure S. Thus, each structural characteristic x divides 
the model e exhaustively into two mutually exclusive subsets of structures 

(2.5) + x 

(of which one may be empty), such that x(S) is uniquely identifiable in So by 
the model if So belongs to (x, and not uniquely identifiable if So belongs to 2x . 
We shall call x(S) uniformly identifiable by e if Ex coincides with S. 

The subdivision of (2 into 25x and S has an important property: If So belongs 
to x, then all structures SO* equivalent to So also belong to 5x, and a similar 
statement holds for E- . This property follows directly from the definition of 
identifiability of x(S) given above. Its meaning is that the identifiability of 
x(S) in So depends only on the distribution of H(y) = H(y I So) of observed 
variables generated by So. To the subdivision of the model corresponds an 
exhaustive subdivision 

(2.6) x 3 &X X 

of the set 

(2.7) 

of all distribution functions H(y I S) generated by the structures S of S, into 
the subset '4, containing those distribution functions H(y I S) generated by 
structures S in which x(S) is uniquely identifiable, and the subset .Su containing 
functions H(y I S) generated by structures for which the opposite is true. 

Hence, whenever the identifiability of x(S) cannot be decided in the same 
sense (affirmatively or negatively) for all structures S of e as a result of either 
Sx or 5- being empty, then the identifiability of the characteristic x(S) of 
the structure S generating the observations is a property of the distribution 
H(y I S) of the observations. This identifiability is equivalent to the hypothesis 

(2.8) H(y I S) belongs to S,x 
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which is in principle6 subject to statistical test under the maintained hypothesis 

(2.9) H(y IS) belongs to D. 

2.6. Testing particular specifications. Often the model is defined by one general 
specification supplemented with a number of particular specifications which are 
"detachable pieces" in the sense that they can be removed, added or replaced 
by alternatives to construct alternative models. We may define the general 
specification as a set (5 of structures which is postulated to contain the model 2' 
in question as a subset. Particular specifications can then be defined as subsets 
Sl , 2*, of 25 of which the model C' is the intersection 

(2.10) ' _ (n 5n S2n* 

An example is that of parametric specification of the "form" of the functions 
4(y, u) defining the structural relationships and pf the distribution function 
F(u) of latent variables as the general specification, and specifications of the 
values of certain parameters of 4 and F as particular specifications. 

In such situations, it is an important question whether a given particular 
specification is-again in principle-subject to statistical test. Whenever the 
answer depends on the other particular specifications, we may ask further which 
minimum set of other particular specifications must (together with the general 
specification) be entered into the "maintained hypothesis" in order that that 
given particular specification be subject to statistical test. A fonnal answer to 
this question, facilitating specific answers in each concrete case, can be given 
as follows. 

Let a model ( be narrowed down to an alternative model 

(2.11) t = e n (g5 

by a particular specification Si. This particular specification will be called 
observationally restrictive if the set .(Q?') of all distribution functions H(y I S') 
of observed variables generated by the structures S' of S' is a proper subset 
of the set t(@') of all distribution functions H(y I S) generated by the structures 
S of 5. A statistical test of the particular specification Si can then be constructed 
by choosing as the hypothesis subject to test 

(2.12) H(y) belongs to SD(S%'), 

and as the maintained hypothesis 

(2.13) H(y) belongs to ( 

The particular specification 25, remains subject to test if the model ; is stripped 
of such other particular specifications which are not necessary for the observa- 
tionally restrictive character of Si , although of course the outcome of the test 
may become either less or more certain as a result. 

6 See sub-section 2.7 below. 
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A frequent case of an observationally restrictive specification is that where a 
parameter 0(S) arready identifiable in almost all structures S of @, is restricted 
by (5, to a prescribed value (or to a prescribed point set not containing all 
points of its domain for all S of S). In this case, the specification in question 
has been called overidentifying. 

2.7. Remarks on the testing of hypotheses. In subsections 2.5 and 2.6 we have 
without further inquiry applied the expression "hypothesis in principle subject 
to test" to any hypothesis which narrows down the set I of distribution func- 
tions H generated by structures of the model to a proper subset .'. It will be 
clear that, to make a test actually possible, I' cannot be allowed to be every- 
where dense in St. For instance, if & is defined parametrically, a hypothesis 
restricting 1' to rational values of the parameters is clearly not subject to statis- 
tical test. Just what set-theoretical requirements on S' are needed to make a 
test possible is a separate problem which we shall not attempt to discuss. 

We have also in another sense oversimplified the problem of testing particular 
specifications. In practice this problem presents itself as the choice of one out 
of many possible combinations of several particular specifications, rather than 
a number of separate and unconnected choices between the rejection and the 
adoption of each particular specification under consideration. Present theory 
of choice between two alternatives does not meet this situation. 

3. An econometric example.7 

In econometric studies8 economic fluctuations have been described by a system 
of difference equations in (observed) economic variables y, subject to two kinds 
of outside influences, emanating respectively from (observed) exogenous-i.e., 
non-economic-variables z, and from (latent) random disturbances u. Each of 
these equations is given a definite meaning in terms of economic behavior. There 
may for instance be equations explaining respectively consumption expenditure 
(from incomes of various groups, price changes, etc.), the supply of consumers' 
goods (from price margins between such goods and their raw materials and labor, 
productive capacity, etc.), investment expenditure, the supply of capital goods, 
etc. The purpose of the identification discussion is to investigate whether, on 
the basis of given a priori knowledge as to the form of these equations, and in 
particular as to what variables occur in any designated equation, procedures of 
estimation or testing of hypotheses can be directed to the parameters of the 
equations of economic behavior themselves, rather than to the parameters of 
"secondary" equations dependent on (derivable from) two or more of the be- 
havior equations. 

In the case of linear systems of equations, a possible form for the general 
specification (the model 25) is as follows. 

(3.1) Boy'(t) + B y'(t - 1) + . + Br7axY'(t - Tmax) + rz'(t) = ut(t) 

I For an expository discussion of identification problems in econometric models see [141 
8 See, for instance, J. Tinbergen [23] and L. R. K1ein [12]. 
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represents the structural relationships. Here y'(t), z'(t), u'(t) are column 
vectors (the transposes of row vectors) of G, K and G elements, respec- 
tively, for each discrete time point or period t = 1, 2, * , T, also t = 0, 

1 - TmaX ,for y'(t). Bo, B, B.,, are square matrices of 
order G, and r is a matrix of G rows and K columns. 

(3.2) Bo is non-singular. 

(3.3) The observed values z(t), t = 1, *., T, are held constant in repeated 
samples, and the components of z(t) are linearly independent. 

(3.4) The components of uQt) have a joint distribution function F(u) (with 
zero means and finite variances) which is independent of t and of z(t). 

(3.5) u(t) and u(t') are independently distributed if t $ t'. 

Particular specifications (21, ,2 - 
* X that have been most frequently em- 

ployed indicate prescribed values (usually zero) of specified elements of the 
matrix 

(3.6) A-[Bo Bi B,., r] 
or of given linear functions of the elements of the gth row a(g) of A, for each 
value g = 1, - - *, G of g. It can always be arranged that of the linear restrictions 
on any one row of A, at most one is non-homogeneous (normalization rule), the 
others homogeneous. The homogeneous restrictions state which variables enter 
into each equation, and possibly with which ratios between some of their co- 
efficients. 

It has been shown [15] that in the model (C, a necessary and sufficient condi- 
tion for the equivalence of two structures S {F(u), A} and S* ={F*(u*), A*l 
is that they are connected by a linear transformation 

(3.7) A* = TA, u'* = Tu', 
with non-singular matrix T. By definition, the model 

(3.8) ('S= ls(sln(2n ... 
identifies a parameter as,* if, whenever A and A* belong to equivalent structures 
S and S*, respectively, of C', we have 

(3.9) ak = ak 

In order to attain such identifiability by linear restrictions on the gth row of A 
it is necessary that one non-homogeneous restriction (normalization rule) on 
the gth row of A be specified in (S'. Recalling that G represents the number of 
rows (and the rank) of A, it can be proved that it is further necessary for the 
simultaneous identifiability of all elements agk, k = 1, * **, K, in the gth row 
a(g) of A, that at least G - 1 additional non-homogeneous restrictions be im- 
posed on that row, say 

(3.10) a(g)V/(g) = 0, plV'(g)} > G-1, 
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where a(g) [al ... agK], the 4b(g) are given matrices (often with elements 
0 or 1 only), and p(X) denotes the rank of X. These restrictions (3.10) are also 
sufficient (in addition to the normalization rule) if 

(3.11) p{AV(g)} G G- 1. 

The gth row of the "rank criterion matrix" AdV>(g) in (3.11) consists of zeros only, 
because of (3.10). Therefore, (3.11) requires the other rows of that matrix to 
be linearly independent.9 

Thus, even if the model (E' includes, besides a normalization rule, the neces- 
sary condition (3.10) for the identifiability of the gth behavior equation, such 
identifiability is still absent in certain structures, corresponding to a point set 
(generally of measure zero) in the space of the coefficients of the remaining equa- 
tions, viz., the point set in which (3.11) is not satisfied. Whether or not A actually 
falls within this point set is, as was stated before in more general terms, a prop- 
erty of the joint distribution function H(y I z) of the observations y, and is 
therefore subject to statistical test. In the present case, this is also seen from 
the fact that the rank of A4a is preserved by the transformation (3.7), and is 
therefore itself an identifiable parameter. 

For certain scientific purposes explicit knowledge of A is unnecessary. One 
such purpose is "prediction without change in structure," i.e., prediction of a 
value of y(t) for a future time t from a hypothetical value of z(t) on the assump- 
tion that A and F(u) have not changed between the observation period and the 
time point to which the prediction applies. Such prediction can be based on 
the knowledge of (a) the population regressions 

(3.12) y'(t) = Ily'(t - 1) + ... + HTmaxY'(t - Tmaax) + IHz'(t) + v'(t) 

of the "jointly dependent" variables y(t) on the "predetermined" variables 
y(t - 1), ... , Y(t - tmax), z(t) and of (b) the distribution function K(v) of 
the population residuals 

(3.13) v(t) = y(t) - E{y(t) I y(t - 1), Y * * y(t - Tmax), z(t)} 

from these regressions. Of course, the matrices "II" are functions of the struc- 
tural parameters (3.6) through 

(3.14) [-I II, ...1 1 - H Iax,] = Bo-'A 

and K(v) can be derived from F(u) through the transformation 

(3.15) v = Bo 'u'. 

The important fact is that II and K(v), by their definitions, depend only on the 
distribution function H(y I z) of the observations, and are therefore uniformly 
identifiable. This is also reflected in the fact that the right hand members of 
(3.14) and (3.15) are invariant for the transformation (3.7). 

9 In that case, overidentification of ac(g) will result if the inequality sign in (3.10) holds. 
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However, the most relevant economic problems are those in which a change 
in A or F(u) is actually or hypothetically present, and in which therefore the 
identifiability of the relevant parts or functions of A and of the characteristics 
of F (u) requires separate inquiry.10 

4. An example from factor analysis.11 Factor analysis has been presented in 
different forms by different authors. We shall here consider the multiple factor 
analysis of Thurstone only [21], [22]. 

The factor analysis methods were developed primarily for the purpose of 
analyzing intelligence tests, but they have also been used for other psychological 
problems and in other sciences. 

Suppose that a person is given a battery of G tests. Let his score in test i 
be yi. The fundamental assumption in factor analysis is that these scores can 
be explained in terms of a relatively small number of hypothetical primary 
factors. Let z1, Z2, *** - Zp denote the hypothetical scores of the person in the 
common factors, i.e., those primary factors which are common to at least two 
tests in the battery. We assume that yi is a homogeneous linear function of 
the scores Zk plus a unique part vi , which may be thought of as consisting of 
an error term plus the contribution of a specific factor. The coefficients riik in 
the linear function just mentioned are called factor loadings. The factor loading 
7rik expresses the relative importance of the common factor k in the answering 
of test i. 

We shall introduce the row vectors y = [yi], z = [zi], v = [vi] and the matrix 
II= [- ik]. The covariance matrices of the sets of variables y, z, and v will be 
denoted by M00, Mzz, and A, respectively. 

In contrast with the preceding example, the variables y are the only observed 
variables. The variables v and z are latent variables. 

Our model will be given by the following specifications: 

(4.1) y' = Hz' + v'. 

(4.2) E(z) = 0 and E(v) = 0. 

(4.3) The set of variables z is stochastically independent of the set of variables v. 

10 See Hurwicz [111. 
11 Proofs of the statements in this section will be found in a separate paper by one of 

the authors (Reiersol [19]). It should be noted that the notation is different in the two 
papers. In the separate paper the notation is close to that of Thurstone. In the present 
paper the notation has been chosen to correspond in some way to the notation in the econo- 
metric example. A list of corresponding symbols in the present paper and in Thurstone's 
books follows: 

Present paper: yi Zk wik G p Myy M2Z A 

Thurstone: si xm aim n r R1 RpQ R1-R 

It should be noted that Myy , Mz,, and A are covariance matrices of the original variables. 
while R , Rp,, and R are covariance matrices of standardized variables. 
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(4.4) A is diagonal and different from 0. 

(4.5) The elements of z and v are jointly normally distributed. 

(4.6) Each yi is correlated with at least one of the other y's. 

(4.7) The rank of II equals the number p of its columns. 

(4.8) M2, is nonsingular. 

(4.9) p is the smallest number of variables z which is compatible with the joint 
probability distribution of the observed variables y and specifications (4.1)- 
(4.8). 

(4.10) Each column of II contains at least p zeros (in unspecified places). 

(4.11) A normalization rule fixing the units of the variables x and a rule fixing 
the order of the column of II. 

Denote by Ilk the matrix consisting of all the rows of II which have a zero in 
the kth column. Let the number of rows in the matrix HLk be pk . Let llki denote 
the submatrix of Ilk which we get when deleting the ith row of Ilk. Using these 
notations we shall formulate the final specification of our model. 

(4.12) The rank of each of the matrices lki (k = 1, 2, - * *, p; i = 1, 2, * *, pk) 
isp - 1. 

Specification (4.1) represents the structural relationships. 
Specification (4.10) means that the experimenter thinks he can construct a 

sufficient number of tests where at least one of the common primary factors is 
absent. 

We shall first consider a model 25 containing Specifications (4.1)-(4.9) only. 
From (4.9) follows that p is uniformly identifiable. 

Let PG = (2G + 1 -v'8iVD). If p > P, the matrix A is generally not 
identifiable. If p < PG, A generally is identifiable. When p = PG, the number 
of values of A, which correspond to a given covariance matrix MVV, is usually 
finite, and may be equal to one or greater than one. The matrices II and M,5 
are never identifiable in the model S. If A is identifiable, the set of all struc- 
tures II*, M*, AI equivalent to the structure { II, M,2, A) is given by the set 
of all matrices 

(4.13) II* Ij, 

and 

(4.14) M = -lMZZ(v) 17 

where I is any square, p-rowed and nonsingular matrix. 
In the following we shall confine our discussion to the case p < pa, and to 

structures in which the matrix M, is such that A is identifiable in S. 
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We shall now consider the model S' defined by Specifications (4.1)-(4.11). 
In this model a necessary and sufficient condition for the identifiability of rl is 
that any square p-rowed minor of II which is of rank p - I is contained in one of 
the matrices Ilk. This condition excludes the possibility that all elements be- 
longing to the intersection of p - 1 rows and two columns of II are all equal to 
zero. In order to be able to use this result, the experimenter would have to be 
able to construct tests where one, but not more than one, common factor would 
be absent. Therefore the result is not particularly useful. In order not to exclude 
the case where two common factors occur in more than p - 2 tests, we have in- 
troduced Specification (4.12). 

We shall finally consider the model (s" defined by Specifications (4.1)-(4.12). 
Assuming M, known, we can determine some value II* of II which satisfies Speci- 
fications (4.1)-(4.9). Since, by assumption, A is identifiable in (E, II* must be 
of the formr I4, where II is the true factor loadings matrix and I is non-singular. 
Let Hk* be a submatrix of I1* containing all the columns of 11* and satisfying the 
following conditions 
(4.15) The rank of rIk is p-1. 

(4.16) The addition to [k of a row contained in II* but not in II* increases 
the rank to p. 

(4.17) Each submatrix of Ik* obtained bydeleting one row of Ilk* has rank p - 1. 

A necessary and sufficient condition for the identifiability of II in the com- 
plete model e" is that there exist exactly p submatrices Hk* of 11* which satisfy 
conditions (4.15)-(4.17), and that the p vectors qk, satisfying the equations 
Hk*qk= 0 when k = 1, 2, ... , p, are linearly independent. 

It should be noted that Specifications (4.10) and (4.12) are observationally re- 
strictive, i.e., they are in principle subject to statistical test. 

5. A comparative discussion of the examples given. Some comparative re- 
marks on the three examples given in sections 1.2, 3 and 4 may illustrate our 
general discussion of the identification problem, given in section 2. 

In each of the three examples considered, the model contains a general speci- 
fication prescribing a parametric form of the structural relationships (2.2). 
Further particular specifications therefore take the form of parameter specifica- 
tions in the function O(y, u) in (2.2) and possibly in the distribution function 
(2.11 of latent variables. A comparison of the three examples shows a striking 
formal similarity of the identification problems to which they give rise. This 
similarity justifies our speaking of identification problems as a separate group 
of problems preparatory to statistical inference, of quite widespread occurrence. 
The same definitions of structure, model, parameter, identifiability are applicable 
and useful in each example. In all three cases, parameters occur, the identifiability 
of which depends on other identifiable structural characteristics (the normality 
of a distribution function in one case, the ranks of parameter matrices in the 
other two cases). 
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Our remaining remarks will be drawn from the econometric and factor analysis 
examples only, partly because these illustrate the identification problem in 
greater elaboration, partly because the closer similarity of these examples permits 
us to notice interesting differences in greater detail. 

Let us consider the particular case of the econometric example when there are 
no time lags between the y's in the structural relationships, i.e., when Tmax = 0. 

In this case the reduced form (3.12) in the econometric example is of the same 
form as equation (4.1), which defines the structural relationships in the factor 
analysis example. The notation in the factor analysis example has been chosen 
with this similarity in mind. However, it should be emphasized that, while the 
variables y are observed in both examples and the variables v are latent in both 
examples, the variables z are observed in the econometric example and latent in 
the factor analysis example, and even the number of variables z is an unknown 
parameter p in the latter example. For this reason, the discussion of the identifi- 
ability of A in factor analysis has no counterpart in the econometric model. 
Furthermore, the identifiability of the matrix H, which is automatic and uniform 
in the econometric model Ee, say, requires detailed specifications in the factor 
analysis model (Ef, say, including the diagonality of A and prescriptions about 
the number of zero elements in each column. 

The observability of z in the econometric case is exploited to postulate, behind 
the reduced form (3.12), a structure {F(u), A} to be identified (where possible) 
from further specifications based on economic theory. Here we meet with another 
analogy, with differences, between the identification problem of A in Se and 
that of HI (given A) in (5f . In the latter problem, the set of matrices II*, belong- 
ing to a set of equivalent structures, is given by equation (4.13). This equation 
is analogous to the first of the equations (3.7) in the econometric case, with HI in 
Sf now corresponding to A' in 2,e. 

If we were to specify zeros in assigned places in the factor loadings matrix H, 
and to introduce a normalization rule for each column of II, the results quoted 
in the econometric example would immediately be applicable to the factor analysis 
case. A necessary condition for the identifiability of H, given that of A, would be 
that the number of specified zeros in each column of HI be at least p - 1. Necessary 
and sufficient for identifiability would be that the matrix consisting of all rows of 
II which have specified zeros in the kth column, be of the rank p - 1, for each 
value of k. 

However, instead of specifying that given elements of H be equal to zero, 
Thurstone assumes that we know that there is a certain minimum number of 
zeros in each column, but that we do not know which particular elements are 
zero. The specification of a certain number of zeros in undesignated places ob- 
viously represents a weaker assumption than the specification of the same number 
of zeros in designated places. It is therefore not surprising that the specification 
of p - 1 zeros in undesignated places in each column is never sufficient for identifi- 
ability of HI. Thus, in the model f , we have introduced the stronger specification 
(4.10). We have seen that even this specification is too weak to be practically 
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useful, and have introduced the additional Specification (4.12), which makes 
the factor analysis model still more different from the econometric model. 

Continuing the analogy in which A' in Se corresponds to II in if , we note an 
important feature common to both examples, and present in other situations as 
well. Even if specifications sufficient, in number and variety of "points of ap- 
plication," for the identifiability of all structural parameters cannot be derived 
from a priori considerations, it remains possible to construct uniformly identifiable 
functions of these parameters, knowledge of which constitutes scientific informa- 
tion of more limited usefulness. 

In the econometric example we have already seen that for certain purposes a 
knowledge of the uniformly identifiable matrix H of the reduced form is sufficient, 
while for other purposes we need to know the matrix A. As a further illustration, 
suppose that we want to test for persistence of the structure by comparing the 
equation systems which we estimate from data for two different periods. Dis- 
regarding errors of estimation (which are not our present topic), if A is the same 
in both cases, II will also be the same in both cases. It is therefore possible to 
arrive at a rejection of the persistence hypothesis by determining II in both cases. 
Suppose next that one row (or several rows) of A are different in the two periods, 
while the other rows of A are identical in the two cases. If Bo changes from one 
period to the other, we may expect each element of II to change. If we can de- 
termine A for each period, the equality (as between periods) of some of the rows 
of A will indicate precisely the extent of validity of the persistence hypothesis. 
If we cannot determine A but only II in each case, this verification will be lost. 

Similarly, it may in factor analysis be sufficient for some purposes to consider 
what we may call the reduced form of II. Let III be the upper square part of II 
which we shall assume to be nonsingular. The matrix A = II 117' will be called 

the reduced form of II. It will be of the form [J]. A is always identifiable when 

A is identifiable. 
Suppose now that the same battery of tests is given to two different popula- 

tions. Suppose that some of the factor loadings are different in the two popula- 
tions, while other factor loadings are the same. If at least one of the different 
factor loadings occurs in the matrix ll , then each element of Am1 may be ex- 
pected to change, and the partial identity of the two structures cannot be dis- 
covered if we determine A only and not II. On the other hand, if II is the same in 
both cases, also A will be the same in both populations. 

Let us next consider two different batteries given to the same population. 
We shall suppose that the two batteries have some tests in common. For each test 
which is common to the two batteries we ought to find the same factor loadings 
in both batteries. In other words, the matrices II in the two cases ought to be 
partly identical. On the other hand, if HII contains rows corresponding to tests 
which are not common to the two batteries, the matrices A11 will be entirely 
different in the two cases. Therefore, again, identification of II will be necessary 
to verify the equality of the factor loadings of tests common to both batteries. 
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A final remark relates to observationally restrictive specifications. Particu- 
larly where the model is to a large degree speculative, empirical confirmation of 
the validity or usefulness of the model is obtained only to the extent that ob- 
servationally restrictive specifications are upheld by the data. Thus, Thurstone 
emphasizes that the number of factors p should be well below the value PG found 
above to be necessary in general for the identifiability of A, before a factor analy- 
sis can be regarded as successful (Thurstone [22], p. 294). 

In econometric work, greater reliance is sometimes placed on a priori specifica- 
tion of the form of a behavior equation, particularly the variables occurring 
in it. If the linear restrictions on an equation in a linear system are just sufficient 
for its identifiability, estimation of the parameters of that equation is possible, 
but none of the identifying restrictions are themselves subject to test. Again, 
dependence on a priori information is diminished (but not eliminated) to the 
extent that a greater number of overiderntifying restrictions are imposed and are 
upheld by the data. 
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