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 PREFACE

 This study is intended as a contribution to econometrics. It repre-
 sents an attempt to supply a theoretical foundation for the analysis of
 interrelations between economic variables. It is based upon modern
 theory of probability and statistical inference. A few words may be said
 to justify such a study.

 The method of econometric research aims, essentially, at a conjunc-
 tion of economic theory and actual measurements, using the theory and
 technique of statistical inference as a bridge pier. But the bridge itself
 was never completely built. So far, the common procedure has been,
 first to construct an economic theory involving exact functional rela-
 tionships, then to compare this theory with some actual measurements,
 and, finally, "to judge" whether the correspondence is "good" or
 "bad." Tools of statistical inference have been introduced, in some
 degree, to support such judgments, e.g., the calculation of a few stand-
 ard errors and multiple-correlation coefficients. The application of such
 simple "statistics" has been considered legitimate, while, at the same
 time, the adoption of definite probability models has been deemed a
 crime in economic research, a violation of the very nature of economic
 data. That is to say, it has been considered legitimate to use some of
 the tools developed in statistical theory without accepting the very
 foundation upon which statistical theory is built. For no tool developed
 in the theory of statistics has any meaning-except, perhaps, for descrip-
 tive purposes-without being referred to some stochastic scheme.

 The reluctance among economists to accept probability models as a
 basis for economic research has, it seems, been founded upon a very
 narrow concept of probability and random variables. Probability
 schemes, it is held, apply only to such phenomena as lottery draw-
 ings, or, at best, to those series of observations where each observation
 may be considered as an independent drawing from one and the same
 "population." From this point of view it has been argued, e.g., that
 most economic time series do not conform well to any probability
 model, "because the successive observations are not independent." But
 it is not necessary that the observations should be independent and
 that they should all follow the same one-dimensional probability law.
 It is sufficient to assume that the whole set of, say n, observations may
 be considered as one observation of n variables (or a "sample point")
 following an n-dimensional joint probability law, the "existence" of
 which may be purely hypothetical. Then, one can test hypotheses re-
 garding this joint probability law, and draw inference as to its possible
 form, by means of one sample point (in n dimensions). Modern statis-

 -*1i-
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 THE PROBABILITY APPROACH IN ECONOMETRICS

 tical theory has made considerable progress in solving such problems
 of statistical inference.

 In fact, if we consider actual economic research-even that carried
 on by people who oppose the use of probability schemes-we find that

 it rests, ultimately, upon some, perhaps very vague, notion of proba-

 bility and random variables. For whenever we apply a theory to facts
 we do not-and we do not expect to-obtain exact agreement. Certain

 discrepancies are classified as "admissible," others as "practically im-
 possible" under the assumptions of the theory. And the principle of
 such classification is itself a theoretical scheme, namely one in which
 the vague expressions "practically impossible" or "almost certain" are
 replaced by "the probability is near to zero," or "the probability is

 near to one."

 This is nothing but a convenient way of expressing opinions about
 real phenomena. But the probability concept has the advantage that it is

 "analytic," we can derive new statements from it by the rules of logic.
 Thus, starting from a purely formal probability model involving certain
 probabilities which themselves may not have any counterparts in real
 life, we may derive such statements as "The probability of A is almost

 equal to 1." Substituting some real phenomenon for A, and transform-
 ing the statement "a probability near to 1" into "we are almost sure
 that A will occur," we have a statement about a real phenomenon, the

 truth of which can be tested.

 The class of scientific statements that can be expressed in proba-
 bility terms is enormous. In fact, this class contains all the "laws" that
 have, so far, been formulated. For such "laws" say no more and no

 less than this: The probability is almost 1 that a certain event will

 occur.

 Thus, there appears to be a two-fold justification for our attempt to
 give a more rigorous, probabilistic, formulation of the problems of eco-
 nomic research: First, if we want to apply statistical inference to testing

 the hypotheses of economic theory, it implies such a formulation of

 economic theories that they represent statistical hypotheses, i.e., state-

 ments-perhaps very broad ones-regarding certain probability dis-

 tributions. The belief that we can make use of statistical inference with-
 out this link can only be based upon lack of precision in formulating the
 problems. Second, as we have indicated above, there is no loss of gen-
 erality in choosing such an approach. We hope to demonstrate that it is

 also convenient and fruitful.
 The general principles of statistical inference introduced in this study

 are based on the Neyman-Pearson theory of testing statistical hy-

 potheses.

 -iv-
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 Chapter I contains a general discussion of the connection between
 abstract models and economic reality.

 Chapter II deals with the question of establishing "constant relation-
 ships" in the field of economics, and with the degree of invariance of
 economic relations with respect to certain changes in structure.

 In Chapter III we discuss the nature of stochastical models and their

 applicability to economic data.
 In Chapter IV it is shown that a hypothetical system of economic

 relations may be transferred into a statement about the joint probability

 law of the economic variables involved, and that, therefore, such a sys-
 tem can be regarded as a statistical hypothesis in the Neyman-Pearson

 sense. A brief expos6 of the Neyman-Pearson theory of testing statis-

 tical hypotheses and estimation is given at the beginning of this chapter.

 Chapter V deals, essentially, with the following problem of estima-
 tion: Given a system of stochastical equations, involving a certain num-

 ber of parameters, such that the system is actually satisfied by economic
 data when a certain set of values of the parameters is chosen, is then the
 system also satisfied for other values of the parameters? If that be the
 case, no unique estimate of the parameters can be obtained from the
 data. (This is, in the case of linear relations, the now well-known prob-
 lem of multicollinearity.) Mathematical rules for investigating such

 situations are given.

 Chapter VI contains a short outline of the problems of predictions.
 Some examples are presented to illustrate essential points.

 * * *

 The idea of undertaking this study developed during my work as an

 assistant to Professor Ragnar Frisch at the Oslo Institute of Economics.
 The reader will recognize many of Frisch's ideas in the following, and
 indirectly his influence can be traced in the formulation of problems
 and the methods of analysis adopted. I am forever grateful for his
 guiding influence and constant encouragement, for his patient teaching,
 and for his interest in my work.

 The analysis, as presented here, was worked out in detail during a
 period of study in the United States, and was first issued in mimeo-
 graphed form at Harvard in 1941. My most sincere thanks are due to
 Professor Abraham Wald of Columbia University for numerous sug-
 gestions and for help on many points in preparing the manuscript.Upon
 his unique knowledge of modern statistical theory and mathematics in
 general I have drawn very heavily. Many of the statistical sections in
 this study have been formulated, and others have been reformulated,
 after discussions with him. The reader will find it particularly useful in

 -V
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 connection with the present analysis to study a recent article by
 Professor Wald and Dr. H. B. Mann, "On the Statistical Treatment of

 Linear Stochastic Difference Equations," in ECONOMETRICA, Vol. 11,
 July-October, 1943, pp. 173-220. In that article will be found a more
 explicit statistical treatment of problems that in the present study have

 only been mentioned or dealt with in general terms.
 I should also like to acknowledge my indebtedness to Professor Jacob

 Marschak, research director of the Cowles Commission, for many stim-

 ulating conversations on the subject. I wish further to express my
 gratitude to Professors Joseph A. Schumpeter and Edwin B. Wilson of
 Harvard University for reading parts of the original manuscript, and

 for criticisms which have been utilized in the present formulation.
 Likewise, I am indebted to Mr. Leonid Hurwicz of the Cowles Com-

 mission and to Miss Edith Elbogen of the National Bureau of Economic
 Research for reading the manuscript and for valuable comments.

 Of course, the author alone should be blamed for any mistake or in-
 completeness.

 TRYGVE HAAVELMO

 New York, June, 1944

 -vi-
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 CHAPTER I

 ABSTRACT MODELS AND REALITY

 1. Introduction

 Theoretical models are necessary tools in our attempts to understand
 and "explain" events in real life. In fact, even a simple description and
 classification of real phenomena would probably not be possible or
 feasible without viewing reality through the framework of some scheme
 conceived a priori.

 Within such theoretical models we draw conclusions of the type, "if
 A is true, then B is true." Also, we may decide whether a particular
 statement or a link in the theory is right or wrong, i.e., whether it does
 or does not violate the requirements as to inner consistency of our
 model. As long as we remain in the world of abstractions and simplifi-
 cations there is no limit to what we might choose to prove or to dis-
 prove; or, as Pareto has said, "Il n'y a pas de proposition qu'on ne
 puisse certifier vraie sous certaines conditions, A determiner."I Our
 guard against futile speculations is the requirement that the results of
 our theoretical considerations are, ultimately, to be compared with
 some real phenomena. This, of course, does not mean that every theo-
 retical result, e.g., those of pure mathematics, must have an immediate
 practical application. A good deal of the work in pure theory consists in
 deriving rigorous statements which may not always have a direct bear-
 ing upon facts. They may, however, help to consolidate and expand the
 techniques and tools of analysis and, thus, increase our power of attack-
 ing problems of reality.

 When statements derived from a theoretical model are transferred
 to facts, the question of "right" or "wrong" becomes more ambiguous.
 The facts will usually disagree, in some respects, with any accurate a
 priori statement we derive from a theoretical model. In other words,
 such exact models are simply false in relation to the facts considered.
 Can we have any use for models that imply false statements? It is
 common to answer this question by observing that, since abstract
 models never correspond exactly to facts, we have to be satisfied when
 the discrepancies are not "too large," when there is "a fairly good cor-
 respondence," etc. But on second thought we shall realize that such a
 point of view is not tenable. For we must then, evidently, have a rule
 for deciding in advance when we shall say that our a priori statements
 are right or wrong. That is, such rules will have to be part of our

 I Manuel d'4conomie politique, 2nd ed., p. 9.
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 2 THE PROBABILITY APPROACH IN ECONOMETRICS

 models. Our models, thus expanded, then lead to somewhat broader
 statements which, when applied to facts, will be either true or false.

 Still, whatever be the theory, it cannot remain true in regard to a
 certain set of facts if it ever implies a false statement about those facts.

 We shall then find that it is practically impossible to maintain any
 theory that implies a nontrivial statement about certain facts, because

 sooner or later the facts will, usually, contradict any such statement.
 Therefore, we shall not only have to be satisfied with broader state-
 ments than the ones usually implied by an "exact" model, but we shall
 also have to adopt a particular kind of model, namely such models
 as permit statements that are not implications, but merely have a cer-
 tain chance of being true. This will lead us to a probabilistic formula-
 tion of theories that are meant to be applied.

 Expressions like "the theory is almost true" simply do not make
 sense unless specified in some such manner as we have indicated. There-
 fore, when we say that an "exact" theory is "almost true" it seems that
 we must mean that this theory, although wrong as its stands, in prac-
 tice can replace another model which, first, would lead us to somewhat
 broader statements and, second, would permit even these broader
 statements to be wrong "on rare occasions."

 Thus, the question of whether or not an exact theoretical model is
 "almost true" is really the same question as whether or not some other
 model that claims less is actually true in relation to the facts, or at
 least does not contradict the facts. It is with models of the latter type
 that we have to concern ourselves when we want to engage in testing
 theories against facts. As already mentioned, we shall see that this leads
 us to adopting a probabilistic formulation of theories to be applied.

 These remarks apply, more or less, to all types of economic theory,
 whether quantitatively formulated or not. But we shall not follow up
 the study of theory versus facts in this broad sense. In all that follows
 we shall be concerned with a particular, but very important, class of
 economic theories, namely those where the theoretical model consists of
 a system of (ordinary or functional) equations between certain eco-
 nomic variables. A few remarks may be made as to the common sense
 of this type of economic theory.

 Broadly speaking, we may classify such quantitative economic rela-
 tions in the three groups:

 I. Definitional identities,
 II. Technical relations,

 III. Relations describing economic action.
 The first group is exemplified by such relations as: Total expenditure=
 price multiplied by quantity bought, total output = output per worker

 times the number of workers, and similar types of "bookkeeping iden-
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 ABSTRACT MODELS AND REALITY 3

 tities." To the second group belong, e.g., technical production func-
 tions, and other natural or institutional restrictions which are usually
 taken as data in economic planning. In the third group we find the

 broad class of relations describing the behavior of individuals or collec-
 tive units in their economic activity, their decisions to produce and
 consume.

 In such relations two sorts of quantities occur, viz., the variables un-
 der investigation, and the parameters introduced in the process of analy-
 sis. (The terms "variables" and "parameters" are relative to the
 particular problem in question, they cannot be defined in any absolute

 sense.) In relations of type I the parameters, if any, are given by defini-
 tion, while in relations of type II or III the parameters are at our
 disposal for the purpose of adapting such hypothetical relations to a

 set of economic variables. From the point of view of economic theory
 this distinction applies in particular to relations of type III; it applies
 perhaps less to those of type II, inasmuch as the choice of form and of
 parameters in technical relations may be regarded as the task of other
 sciences.

 Let us consider in particular the relations of type III. Certainly we
 know that decisions to consume, to invest, etc., depend on a great num-
 ber of factors, many of which cannot be expressed in quantitative
 terms. What is then the point of trying to associate such behavior with

 only a limited set of measurable phenomena, which cannot give more
 than an incomplete picture of the whole "environment" or "atmos-
 phere" in which the economic planning and decisions take place? First

 of all, we should notice that "explanations" of this kind are only at-
 tempted for such phenomena as themselves are of a quantitative nature,
 such as prices, values, and physical volume. And when economic de-
 cisions are of the type "more" or "less," "greater" or "smaller," they
 must have consequences for some other measurable phenomena. Thus,
 if a man starts to spend more of his (fixed) income on a certain com-
 modity, he must spend less on other things. If a manufacturer wants to
 increase his production, he must buy more means of production. If his
 profit increases, this must have measurable consequences for his spend-
 ing-saving policy; and so forth. It would certainly be very artificial to
 assume that these quantities themselves do not influence the decisions
 taken, and that there should be no system in such influences. It is,
 then, only a natura) step to attempt an approximate description of such
 influences by means of certain behavioristic parameters.

 At least this is one type of "explanation." Other types may be chosen.
 But whatever be the "explanations" we prefer, it is not to be forgotten
 that they are all our own artificial inventions in a search for an under-
 standing of real life; they are not hidden truths to be "discovered."
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 4 THE PROBABILITY APPROACH IN ECONOMETRICS

 2. "Exact Quantitative Definitions of the Economic Variables"

 This phrase has become something like a slogan among modern econ-
 omists, but there sometimes appears to be some confusion as to what
 it actually means. The simple and rational interpretation would seem

 to be that, since the most important facts we want to study in real
 economic life present themselves in the form of numerical measure-
 ments, we shall have to choose our models from that field of logic which
 deals with numbers, i.e., from the field of mathematics. But the con-
 cepts of mathematics obtain their quantitative meaning implicitly
 through the system of logical operations we impose. In pure mathe-
 matics there really is no such problem as quantitative definition of a
 concept per se, without reference to certain operations.

 Therefore, when economists talk about the problem of quantitative
 definitions of economic variables, they must have something in mind
 which has to do with real economic phenomena. More precisely, they
 want to "give exact rules how to measure certain phenomena of real
 life," they want to "know exactly what elements of real life correspond
 to those of theory." When considering a theoretical set-up, involving
 certain variables and certain mathematical relations, it is common to
 ask about the actual meaning of this and that variable. But this ques-
 tion has no sense within a theoretical model. And if the question applies
 to reality it has no precise answer. The answer we might give consists,
 at best, of a tentative description involving words which we have
 learned to associate, more or less vaguely, with certain real phenomena,

 Therefore, it is one thing to build a theoretical model, it is another
 thing to give rules for choosing the facts to which the theoretical model
 is to be applied. It is one thing to choose the theoretical model from the

 field of mathematics, it is another thing to classify and measure objects
 of real life. For the latter we shall always need some willingness among
 our fellow research workers to agree "for practical purposes" on ques-
 tions of definitions. It is never possible-strictly speaking-to avoid
 a,mbiguities in classifications and measurements of real phenomena. Not
 only is our technique of physical measurement unprecise, but in most
 cases we are not even able to give an unambiguous description of the
 method of measurement to be used, nor are we able to give precise rules
 for the choice of things to be measured in connection with a certain
 theory. Take, for instance, the apparently simple question of measuring
 the total consumption of a commodity in a country during a given
 period of time. Difficulties immediately arise from the fact that the
 notions of a "commodity," "consumption," etc., are not precise terms;
 there may be dispute concerning their content or quantitative measure.
 And this applies to all quantities that represent practical measure-
 ments of real objects.
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 ABSTRACT MODELS AND REALITY 5

 3. "Observational," "True," and Theoretical Variables;
 an Important Distinction

 Even though our actual knowledge of economic facts is based on
 rough classifications and approximate measurements, we feel that we

 often "could do better than this," that, in many cases, it would be pos-
 sible to give descriptions and rules of measurement in such a way that
 two or more independent observers applying these rules to a described
 group of objects would obtain practically the same quantities. Often,

 when we operate with such notions as national income, output of cer-

 tain commodities, imports, exports, etc., we feel that these things have
 a definite quantitative meaning and could possibly be measured rather

 accurately, but-for financial reasons or lack of time-we are not able
 to carry out the counting and measurement in the way we should

 really like to do it. And we also usually feel that these problems of

 measurements are somewhat different from those of searching for "ex-
 planations." When we speak of certain known facts to be "explained"

 we think, in many cases, of some more correct or controlled measure-
 ments of facts than those that happen to be given by current economic

 statistics. From experience in various fields we have acquired empirical

 knowledge as to sources of errors and the degree of precision connected

 with current types of statistical observation technique. At least as the
 situation is at present in the field of economic statistics, we almost
 always know that we could do better, if we could only find the
 necessary time and money. When we speak of the "true" values

 of certain observable phenomena, as compared with some approximate

 statistical information, the distinction we have in mind is probably

 something like the one we have described above in somewhat vague
 terms.

 In pure theory we introduce variables (or time functions) which, by
 construction, satisfy certain conditions of inner consistency of a theo-
 retical model. These theoretical variables are usually given names that
 indicate with what actual, "true," measurements we hope the theoreti-

 cal variables might be identified. But the theoretical variables are not
 defined as identical with some "true" variables. For the process of cor-
 rect measurement is, essentially, applied to each variable separately.
 To impose some functional relationship upon the variables means going

 much further. We may express the difference by saying that the "true"
 variables (or time functions) represent our ideal as to accurate measure-
 ments of reality "as it is in fact," while the variables defined in a theory
 are the true measurements that we should make if reality were ac-

 tually in accordance with our theoretical model.
 The distinction between these three types of variables, although

 somewhat vague, is one of great importance for the understanding of
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 6 THE PROBABILITY APPROACH IN ECONOMETRICS

 the connection between pure theory and its applications. Let us try to
 explain the matter in a different way that is, perhaps, clearer.
 One of the most characteristic features of modern economic theory

 is the extensive use of symbols, formulae, equations, and other mathe-
 matical notions. Modern articles and books on economics are "full of
 mathematics." Many economists consider "mathematical economics"
 as a separate branch of economics. The question suggests itself as to
 what the difference is between "mathematical economics" and "mathe-
 matics." Does a system of equations, say, become less mathematical
 and more economic in character just by calling x "consumption," y
 "price," etc.? There are certainly many examples of studies to be found
 that do not go very much further than this, as far as economic signifi-
 ance is concerned. But they hardly deserve the ranking of contributions
 to economics. What makes a piece of mathematical economics not only
 mathematics but also economics is, I believe, this: When we set up a
 system of theoretical relationships and use economic names for the
 otherwise purely theoretical variables involved, we have in mind some
 actual experiment, or some design of an experiment, which we could at
 least imagine arranging, in order to measure those quantities in real
 economic life that we think might obey the laws imposed on their
 theoretical namesakes. For example, in the theory of choice we intro-
 duce the notion of indifference surfaces, to show how an individual,
 at given prices, would distribute his fixed income over the various com-
 modities. This sounds like "economics" but is actually only a formal
 mathematical scheme, until we add a design of experiments that would
 indicate, first, what real phenomena are to be identified with the theo-
 retical prices, quantities, and income; second, what is to be meant by
 an "individual"; and, third, how we should arrange to observe the in-
 dividual actually making his choice.

 There are many indications that economists nearly always have some
 such design of ideal experiments in the back of their minds when they
 build their theoretical models. For instance, there is hardly an econo-
 mist who feels really happy about identifying current series of "national
 income," "consumption," etc., with the variables by these names in
 his theories. Or, conversely, he would often find it too complicated or
 perhaps even uninteresting to try to build models such that the ob-
 servations he would like to identify with the corresponding theoretical
 variables would correspond to those actually given by current economic
 statistics. In the verbal description of his model, "in economic terms,"
 the economist usually suggests, explicitly or implicitly, some type of
 experiments or controlled measurements designed to obtain the real
 variables for which he thinks that his model would hold. That is, he
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 ABSTRACT MODELS AND REALITY 7

 has in mind some "true" variables that he would like to measure. The
 data he actually obtains are, first of all, nearly always blurred by some
 plain errors of measurements, that is, by certain extra "facts" which he
 did not intend to "explain" by his theory. Secondly, and that is still
 more important, the economist is usually a rather passive observer
 with respect to important economic phenomena; he usually does not
 control the actual collection of economic statistics. He is not in a posi-
 tion to enforce the prescriptions of his own designs of ideal experiments.

 One could perhaps also characterize the difference between the "true"
 and the "observational" variables in the following way. The "true"
 variables are variables such that, if their behavior should contradict a
 theory, the theory would be rejected as false; while "observational"
 variables, when contradicting the theory, leave the possibility that we
 might be trying out the theory on facts for which the theory was not
 meant to hold, the confusion being caused by the use of the same names
 for quantities that are actually different.

 In order to test a theory against facts, or to use it for predictions,
 either the statistical observations available have to be "corrected," or
 the theory itself has to be adjusted, so as to make the facts we consider
 the "true" variables relevant to the theory, as described above. To use
 a mechanical illustration, suppose we should like to verify the law of
 falling bodies (in vacuum), and suppose our measurements for that
 purpose consisted of a series of observations of a stone (say) dropped
 through the air from various levels above the ground. To use such data
 we should at least have to calculate the extra effect of the air resistance
 and extract this element from the data. Or, what amounts to the same,
 we should have to expand the simple theory of bodies falling in vacuum,
 to allow for the air resistance (and probably many other factors). A
 physicist would dismiss these measurements as absurd for such a pur-
 pose because he can easily do much better. The economist, on the other
 hand, often has to be satisfied with rough and biased measurements.
 It is often his task to dig out the measurements he needs from data
 that were collected for some other purpose; or, he is presented with
 some results which, so to speak, Nature has produced in all their com-
 plexity, his task being to build models that explain what has been
 observed.

 The practical conclusion of the discussion above is advice that
 economists hardly ever fail to give, but that few actually follow, viz.,
 that one should study very carefully the actual series considered and
 the conditions under which they were produced, before identifying
 them with the variables of a particular theoretical model. (We shall
 discuss these problems further in Chapter II.)
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 8 THE PROBABILITY APPROACH IN ECONOMETRICS

 4. Theoretical Models, Hypotheses, and Facts

 Let x1', x2', * * *, xn', be n real variables, and let (xl/, x2', * , x"%
 or, for short, (x'), denote any particular set of values of these variables.
 Any such set may be represented by a point in n-dimensional Cartesian
 space. Let S be the set of all such points, and let "A" be a system of
 rules or operations which defines a subset SA of S. (SA might, for ex-

 ample, be a certain n-dimensional surface.) The rules "A" ascribe to
 each point (x') a property, viz., the property of belonging to SA or not
 belonging to SA. If we allow the n variables x' to vary only under the
 condition that (x') must belong to SA, this forms a theoretical model

 for what the variables x' can do.

 Similarly, consider n time functions xi'(t), x2'(t), ... *, xn'(t). Let F
 be the set of all possible systems of n time functions, and let "B" be a

 system of rules or operations that defines a subclass FB of F. Any sys-
 tem of n time functions will then have the property of either belonging

 to FB or not belonging to FB. The system of rules "B" defines a model
 with respect to n time series.

 Thus, a theoretical model may be said to be simply a restriction upon
 the joint variations of a system of variable quantities (or, more gen-
 erally, "objects") which otherwise might have any value or property.
 More generally, the restrictions imposed might not absolutely exclude

 any value of the quantities considered; it might merely give different
 weights (or probabilities) to the various sets of possible values of the
 variable quantities. The model in question would then usually be char-
 acterized by the fact that it defines certain restricted subsets of the set
 of all possible values of the quantities, such that these subsets have
 nearly all of the total weight.

 A theoretical model in this sense is, as it stands, void of any practical

 meaning or interest. And this situation is, as we have previously ex-
 plained, not changed by merely introducing "economic names" for the

 variable quantities or objects involved. The model attains economic
 meaning only after a corresponding system of quantities or objects in
 real economic life has been chosen or described, in order to be identified
 with those in the model. That is, the model will have an economic mean-
 ing only when associated with a design of actual experiments that de-

 scribes-and indicates how to measure-a system of "true" variables

 (or objects) xl, x2, , xn that are to be identified with the corre-
 sponding variables in the theory.

 As a consequence of such identification all the permissible statements
 that can be made within the model with respect to the theoretical

 variables or objects involved are automatically made also with respect
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 ABSTRACT MODELS AND REALITY 9

 to the actual, "true" variables. The model thereby becomes an a priori
 hypothesis about real phenomena, stating that every system of values

 that we might observe of the "true" variables will be one that belongs
 to the set of value-systems that is admissible within the model. The

 idea behind this is, one could say, that Nature has a way of selecting
 joint value-systems of the "true" variables such that these systems are
 as if the selection had been made by the rule defining our theoretical

 model. Hypotheses in the above sense are thus the joint implications-
 and the only testable implications, as far as observations are concerned
 -of a theory and a design of experiments. It is then natural to adopt
 the convention that a theory is called true or false according as the
 hypotheses implied are true or false, when tested against the data

 chosen as the "true" variables. Then we may speak, interchangeably,
 about testing hypotheses or testing theories.

 If a certain set of value-systems of the variables is excluded in the
 model then any one system of observed values that falls into this ex-
 cluded set would be sufficient to reject the hypothesis (and, therefore,
 the theory) as false with respect to the "true" variables considered. But

 as we have mentioned, the model may be (and we believe that to be
 practical it has to be) such that it does not exclude any system of values
 of the variables, but merely gives different weights or probabilities to
 the various value-systems. These weights then need a practical inter-
 pretation in order that the model shall express a meaningful hypothesis

 with respect to the corresponding "true" variables. According to ex-
 perience it has very often been found fruitful to interpret such weights
 as a measure of actual "frequency of occurrence." If the total weight
 ascribed to all the possible value-systems is finite, we can then say that
 the practical meaning of a set of value-systems that has a weight almost
 equal to zero according to the model is a hypothesis saying that Nature
 has a way of selecting joint value-systems of the corresponding "true"

 variables that makes it "practically impossible" that a system of ob-
 served values should fall within such a set. For the purpose of testing
 the theory against some other alternative theories we might then agree
 to deem the hypothesis tested false whenever we observe a certain
 number of such "almost impossible" value-systems. That is, at the risk
 of making an error, we should then prefer to adopt another hypothesis
 under which the observations made are not of the "almost impossible"
 type.

 If we have found a certain hypothesis, and, therefore, the model be-
 hind it, acceptable on the basis of a certain number of observations, we

 may decide to use the theory for the purpose of predictions. If, after a
 while, we find that we are not very successful with these predictions,
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 10 THE PROBABILITY APPROACH IN ECONOMETRICS

 we should be inclined to doubt the validity of the hypothesis adopted
 (and, therefore, the usefulness of the theory behind it). We should then
 test it again on the basis of the extended set of observations.

 It has been found fruitful to introduce a special calculus for deriving
 such types of hypotheses. This is the calculus of probability. Later on
 we shall study at length the common sense of applying this calculus for
 the derivation of hypotheses about economic phenomena.

 Now suppose that we have a set of observations that all confirm the
 statements that are permissible within our model. Then these state-
 ments become facts interpreted in the light of our theoretical model, or,
 in other words, our model is acceptable so far as the known observations

 are concerned. But will the model hold also for future observations?
 We cannot give any a priori reason for such a supposition. We can
 only say that, according to a vast record of actual experiences, it seems
 to have been fruitful to believe in the possibility of such empirical in-
 ductions.

 * * *

 In the light of the above analysis we may now classify, roughly, the
 main problems that confront us in scientific quantitative research.
 They are:

 1. The construction of tentative models. It is almost impossible, it
 seems, to describe exactly how a scientist goes about constructing a
 model. It is a creative process, an art, operating with rationalized no-
 tions of some real phenomena and of the mechanism by which they are
 produced. The whole idea of such models rests upon a belief, already

 backed by a vast amount of experience in many fields, in the existence
 of certain elements of invariance in a relation between real phenomena,
 provided we succeed in bringing together the right ones.

 2. The testing of theories, which is the problem of deciding, on the
 basis of data, whether to maintain and use a certain theory or to dis-
 miss it in exchange for another.

 3. The problem of estimation, which, in the broadest sense, is the
 problem of splitting, on the basis of data, all a priori possible theories
 about certain variables into two groups, one containing the admissible
 theories, the other containing those that must be rejected.

 4. The problem of predictions.

 The problems 2, 3, and 4 are closely bound to a probabilistic formula-
 tion of hypotheses, and much confusion has been caused by attempts to
 deal with them otherwise. In a probabilistic formulation they can all be
 precisely defined, and much of the confusion in current economic re-

 search can then be cleared away. These problems will be the subjects
 of Chapters IV, V, and VI.
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 ABSTRACT MODELS AND REALITY 11

 Many economists would, however, consider the problems 2-4 as de-
 tails. Their principal concern is in a sense a more fundamental one,
 namely the question of whether we might have any hope at all of con-

 structing rational models that will contribute anything to our under-
 standing of real economic life. In the next chapter we shall try to
 clarify some of the main arguments and points in this discussion.
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 CHAPTER II

 THE DEGREE OF PERMANENCE OF ECONOMIC LAWS

 If we compare the historic developments of various branches of
 quantitative sciences, we notice a striking similarity in the paths they
 have followed. Their origin is Man's craving for "explanations" of
 "curious happenings," the observations of such happenings being more
 or less accidental or, at any rate, of a very passive character. On the
 basis of such-perhaps very vague-recognition of facts, people build
 up some primitive explanations, usually of a metaphysical type. Then,
 some more "cold-blooded" empiricists come along. They want to "know
 the facts." They observe, measure, and 'classify, and, while doing so,
 they cannot fail to recognize the possibility of establishing a certain
 order, a certain system in the behavior of real phenomena. And so they
 try to construct systems of relationships to copy reality as they see it
 from the point of view of a careful, but still passive, observer. As they
 go on collecting better and better observations, they see that their
 "copy" of reality needs "repair." And, successively, their schemes grow
 into labyrinths of "extra assumptions" and "special cases," the whole
 apparatus becoming more and more difficult to manage. Some clearing
 work is needed, and the key to such clearing is found in a priori reason-
 ing, leading to the introduction of some very general-and often very
 simple-principles and relationships, from which whole classes of appar-
 ently very different things may be deduced. In the natural sciences
 this last step has provided much more powerful tools of analysis than
 the purely empirical listing of cases.

 We might be inclined to say that the possibility of such fruitful
 hypothetical constructions and deductions depends upon two separate
 factors, namely, on the one hand, the fact that there are laws of Nature,
 on the other hand, the efficiency of our analytical tools. However, by
 closer inspection we see that such a distinction is a dubious one. Indeed,
 we can hardly describe such a thing as a law of nature without referring
 to certain principles of analysis. And the phrase, "In the natural sci-
 ences we have stable laws," means not much more and not much less
 than this: The natural sciences have chosen very fruitful ways of look-
 ing upon physical reality. So also, a phrase such as "In economic life
 there are no constant laws," is not only too pessimistic, it also seems
 meaningless. At any rate, it cannot be tested. But we may discuss
 whether the relationships that follow from our present scheme of eco-
 nomic theory are such that they apply to facts of real economic life.
 We may discuss problems which arise in attempting to make compari-
 sons between reality and our present set-up of economic theory. We

 -12-
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 THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 13

 may try to find a rational explanation for the fact that relatively few
 attempts to establish economic "laws" have been successful. I think
 that considerable effort should first be spent on clarifying these re-
 stricted problems.

 In the following we propose to deal with some of the fundamenital
 problems that arise in judging the degree of persistence over time of
 relations between economic variables. For the sake of simplicity we

 shall often operate here with the notion of "exact" rather than "sto-
 chastical" relationships. We can do this because the main points to be
 discussed do not seem to be principally related to the particular type
 of relations that we might hope to establish. The problems to be dis-
 cussed are more directly connected with the general question of whether
 or not we might hope to find elements of invariance in economic life,
 upon which to establish permanent "laws."

 5. What Do We Mean by a "Constant Relationship"?

 When we use the terms "constant relationships," or "unstable,
 changing relationships," we obviously refer to the behavior of some
 real economic phenomena, as compared with some behavior that we
 expect from theoretical considerations. The notion of constancy or

 permanence of a relationship is, therefore, not one of pure theory. It
 is a property of real phenomena as we look upon them from the point of

 view of a particular theory. More precisely, let xi', X2', , xn, be n
 theoretical variables, restricted by an equation

 (5.1) f(xl', X2', - * * , Xn'; 01 a, X2, .* * * Xa -) = 8 X

 where the a's are constants, and where s' is a shift possessing certain
 specified properties. (5.1) does not become an economic theory just
 by using economic terminology to name the variables involved. (5.1)
 becomes an economic theory when associated with a rule of actual

 measurement of n economic variables, x1, x2, , x.,X to be compared
 with x1', X2', * X,,', respectively. The essential feature of such a rule
 of measurement is that it does not a priori impose the restriction (5.1)
 upon the variables to be measured. If we did that, we should fall back
 into the world of abstract theory, because one of the variables would

 follow from the measurement of the n-1 others and the properties
 assigned to s'. The rule of measurement is essentially a technical device
 of measuring each variable separately. It is a design of actual experiments,
 to obtain the "true" variables as described in Section 3.

 All value-sets of the n theoretical variables x' in (5.1) have a common
 property, namely the property of satisfying that equation. We are in-

 terested in whether or not the "true" variables xi, x2, * * , xn, have the
 same property. Let (x1, x2, ... ,x ,) be any one of the results obtain-
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 14 THE PROBABILITY APPROACH IN ECONOMETRICS

 able by our design of experiments, and let s be a variable defined
 implicitly by

 (5.2) f(xI, X22 * * Xn; all a2, a *Xk) =

 where f is the same as in (5.1). If then s has the same properties as s'
 in (5.1) whatever be the system of experimentally observed values of

 X1, X2, * , x", we say that the observable "true" variables xi follow
 a constant law.

 Therefore, given a theoretical relation, a design of experiments, and
 a set of observations, the problem of constancy or invariance of an
 economic relation comes down to the following two questions:

 (1) Have we actually observed what we meant to observe, i.e., can
 the given set of observations be considered as a result obtained by
 following our design of "ideal" experiments?

 (2) Do the "true" variables actually have the properties of the theo-
 retical variables?

 A design of experiments (a prescription of what the physicists call
 a "crucial experiment") is an essential appendix to any quantitative
 theory. And we usually have some such experiments in mind when we
 construct the theories, although-unfortunately-most economists do
 not describe their designs of experiments explicitly. If they did, they
 would see that the experiments they have in mind may be grouped into
 two different classes, namely, (1) experiments that we should like to
 make to see if certain real economic phenomena-when artificially iso-
 lated from "other influences"-would verify certain hypotheses, and
 (2) the stream of experiments that Nature is steadily turning out from
 her own enormous laboratory, and which we merely watch as passive
 observers. In both cases the aim of theory is the same, namely, to be-
 come master of the happenings of real life. But our approach is a little
 different in the two cases.

 In the first case we can make the agreement or disagreement between
 theory and facts depend upon two things: the facts we choose to con-
 sider, as well as our theory about them. As Bertrand Russell has said:
 "The actual procedure of science consists of an alternation of observa-
 tion, hypothesis, experiment, and theory."'

 In the second case we can only try to adjust our theories to reality
 as it appears before us. And what is the meaning of a design of experi-
 ments in this case? It is this: We try to choose a theory and a design of
 experiments to go with it, in such a way that the resulting data would be
 those which we get by passive observation of reality. And to the extent

 1 The Analysis of Matter, New York, 1927, p. 194.
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 THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 15

 that we succeed in doing so, we become master of reality-by passive
 agreement.

 Now, if we examine current economic theories, we see that a great
 many of them, in particular the more profound ones, require experi-
 ments of the first type mentioned above. On the other hand, the kind

 of economic data that we actually have belong mostly to the second
 type. In economics we use a relatively small vocabulary to describe an
 enormous variety of phenomena (and sometimes economists use differ-

 ent names for the same phenomenon). The result is that many different

 things pass under the same name, and that, therefore, we are in danger
 of considering them as identical. And thus, theories are often being
 compared with data which cannot at all be considered as observations
 obtained by following the design of experiment we had in mind when
 constructing the theory. Of course, when a theory does not agree with

 the facts we can always say that we do not have the right kind of data.
 But this is an empty phrase, unless we can describe, at the same time,
 what would be the right kind of data, and how to obtain them, at least
 in point of principle. If every theory should be accompanied by a care-

 fully described design of experiments, much confusion on the subject
 of constant versus changing economic "laws" would be cleared up.

 This description of the problem of stability or permanence of eco-
 nomic relations is a very broad one. It may give a preliminary answer
 to very superficial critics of the possibility of developing economics as
 a science. But it does not answer the many profound problems of de-
 tails which confront us when we really try to investigate why econom-
 ics, so far, has not led to very accurate and universal laws like those
 obtaining in the natural sciences.

 Let us first once more look upon the general argument: "There are

 no constant laws describing phenomena of economic life." Above we

 said that this argument was meaningless. We shall support this state-
 ment a little further. It is not possible to give any precise answer to the
 argument, because it does not itself represent a precise question. But

 let us try to understand what the argument means. Suppose, first, we
 should consider the "class of all designs of experiments," the results of
 which "we should be interested in as economists." Here, of course, we
 get into difficulty immediately, because it is probably not possible to
 define such a class. We do not know all the experiments we might be
 interested in. Consider, on the other hand, the class of all possible eco-

 nomic theories (of the type we are discussing here). By each design of
 experiments there is defined a sequence of actual measurements. Con-
 sider, for each such measurement, the subclass of theories with which
 the measurement agrees. For a sequence of measurements we get a
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 16 THE PROBABILITY APPROACH IN ECONOMETRICS

 sequence of such subclasses of theories. Now, if these classes of theories
 did not have any nontrivial property in common, we might say that
 the measurements obtained by the design of experiments used do not

 follow any law. But does this statement really say anything? Obviously,
 very little. Because it is a statement about classes of things which are
 completely undefined. No matter how much we try and fail, we should
 never be able to establish such a conclusion as "In economic life there

 are no constant laws."

 We shall consider a much more restricted problem, namely this: How
 far do the hypothetical "laws" of economic theory in its present stage
 apply to such data as we get by passive observations? By passive ob-

 servations we mean observable results of what individuals, firms, etc.,
 actually do in the course of events, not what they might do, or what
 they think they would do under certain other specified circumstances.

 It would be superficial to consider this problem merely as a question of

 whether our present economic theory is good or bad; or, rather, that is
 not a fruitful setting of the problem. We have to start out by analyzing

 what we are actually trying to achieve by economic theory. We have to
 compare its designs of idealized experiments with those which would

 be required to reproduce the phenomena of real economic life that we
 observe passively.

 In such a discussion we soon discover that we have to deal with a
 manifold of different questions. Let us try to review the most important
 ones:

 (a) Are most of the theories we construct in "rational economics"
 ones for which historical data and passive observations are not ade-

 quate experiments? This question is connected with the following:
 (b) Do we try to construct theories describing what individuals,

 firms, etc., actually do in the course of events, or do we construct theo-

 ries describing schedules of alternatives at a given moment? If the lat-

 ter is the case, what bearing do such schedules of alternatives have upon

 a series of decisions and actions actually carried out?

 (c) Why do we not confine ourselves only to such theories as are di-
 rectly verifiable? Or, why are we interested in relations for which Na-

 ture does not furnish experiments?

 (d) Very often our theories are such that we think certain directly
 observable series would give adequate experimental results for a verifi-
 cation, provided other things did not change. What bearing may such
 theories have upon reality, if we simply neglect the influences of these

 "other things"? This, again, is connected with the following problem:
 (e) Are we interested in describing what actually does happen, or are

 we interested in what would happen if we could keep "other things"
 unchanged? In the first case we construct theories for which we hope
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 THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 17

 Nature itself will take care of the necessary ceteris paribus conditions,
 knowing, e.g., that this has been approximately so in the past. In the
 second case we try to take care of the ceteris paribus conditions our-
 selves, by statistical devices of clearing the data from influences not
 taken account of in the theory (e.g., by multiple-correlation analysis).

 (f) From experience with correlation of time series we know that it
 is often possible to establish very close relationships between economic
 variables for some particular time period, while the relationships break
 down for the next time period. Does this fact mean that we cannot hope
 to establish constant laws of economic life?

 These questions, being taken more or less directly out of current dis-
 cussions on problems of economic research, are, as can be seen, hope-
 lessly overlapping; nor does any one of them form a precise analytical
 problem. We, therefore, ask: Can these problems be covered, at least
 partly, by analysis of a set of simplified and more disjunct problems?
 In the following we shall try to do so by studying three different groups
 of problems, which we may call, for short,

 I. The reversibility of economic relations,
 II. The question of simplicity in the formulation of economic laws,

 III. The autonomy of an economic relation.

 6. The Reversibility of Economic Relations

 In the field of economic research the application of relations of pure
 theory to time series or historic records has become something like
 taboo. Many economists, not sufficiently trained in statistical theory,
 have, it seems, been "scared away" by such critical work as, e.g., that
 of G. U. Yule.2 They have come to think that there is something in-
 herent in economic time series as such, which make these data unfit
 for application of pure economic theory. The general argument is some-
 thing like this: In economic theory we operate with hypothetical sched-
 ules of decisions, which individuals, firms, etc., may take in response
 to certain alternatively fixed conditions (e.g., adaptation of quantity
 consumed to a given price change). But economic time series showing
 actual results of decisions taken are only historic descriptions of a
 one-way journey through a sequence of ever-shifting "environments,"
 so that it is not possible to make actual predictions by means of the
 schedules of alternatives given by pure economic theory.

 In trying to analyze this problem more precisely, we notice first that
 the general argument above does not deny the possibility that relations
 deduced from economic theory may prove very persistent and accurate

 2 E.g., "Why Do We Sometimes Get Nonsense-correlations between Time
 Series?" Journal of the Royal Statistical Society, Vol. 89, 1926, pp. 1-64.
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 18 THE PROBABILITY APPROACH IN ECONOMETRICS

 when applied to facts. The argument implies only that the types of
 data represented by economic time series are not those which would re-
 sult from the designs of experiments prescribed in economic theory.
 Here we should, first of all, think of the difficulties that arise from
 the fact that series of passive observations are influenced by a great
 many factors not accounted for in theory; in other words, the difficulties
 of fulfilling the condition "Other things being equal." But this is a
 problem common to all practical observations and measurements; it is,
 in point of principle, not a particular defect of economic time series.
 If we cannot clear the data of such "other influences," we have to try
 to introduce these influences in the theory, in order to bring about more
 agreement between theory and facts. Also, it might be that the data,
 as given by economic time series, are restricted by a whole system of
 relations, such that the series do not display enough variations to verify
 each relation separately. These problems we shall discuss at length in
 the next two sections. Again, there is the problem of errors of measure-
 ments proper. But this problem also is a general one, and not one pecu-
 liar to economic time series.

 If these difficulties are put aside, is there still some property peculiar
 to economic time series that makes them unfit for the application
 of relations deduced from pure economic theory? Even by a careful
 inspection it is difficult to see what such a property could be, because,
 if we can construct any general laws at all, describing what individuals
 actually do, and if we have a series of observations of what the individ-
 uals actually have done in the past, then, necessarily, the theoretical
 law would fit these observation series. If, therefore, we see here a
 problem at all, I think it arises, mostly, from a confusion of two differ-
 ent kinds of relations occurring in economic theory, namely (1) those
 intended to describe what the individuals actually do at any time, and
 (2) those describing a schedule of alternatives at a given moment, before
 any particular decision has been taken. Relations of the first type are,
 usually, derived from a system of relations of the second type. To make
 the discussion on this point more concrete we shall consider a simple
 example of consumers' demand for a single commodity.

 Suppose that an individual consumes n different commodities, and
 let xi, x2, ..., x1 denote quantities of these n commodities. And let
 Pi, P2, * * , Pn be their corresponding prices. Assume that the individ-
 ual has constant money income. According to the general theory of con-
 sumers' choice, we may write

 (6.1) Xi = fi(P p2, *Xp.) (i = 1 2, ... , n),

 where f, are some demand functions. Assume now that all prices, except
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 one, say pi, are constant, and consider the corresponding quantity, xi,
 of commodity No. 1. We may then write

 (6.2) xl = f(pi).

 What does this function mean, under the assumptions made above? It
 may mean two different things.

 One interpretation is that, whenever pi has a particular value, say pi',
 the individual chooses to buy a quantity xl'=f(pl') of commodity
 No. 1.

 Another interpretation is this: Suppose that the individual is in a

 position where he pays the price pl and consumes a quantity x10. He
 considers in that position the possible changes in his consumption of
 commodity No. 1 that he would choose in response to various changes

 in the price from p'0. If the price be changed from pl? to pi', say, he will
 buy xl'=f(pl'); if the price be changed from pl0 to pi" say, he will buy
 xi" =f(pl"); and so forth. That is to say, he has a schedule of alterna-
 tives with respect to the next price change as judged from his present
 position (x10, p,0). To indicate that his schedule may depend upon his
 present position, we might write

 (6.3) xl = fo(pl),

 where f? satisfies x10 =f0(plo).
 It is clear that these two types of demand schedules are of different

 nature, and, furthermore, that the first one claims more than the sec-

 ond one. For the first one requires the assumption that there is a unique
 relation between consumption and prices according to which the indi-
 vidual acts irrespective of the position he happens to be in at the mo-

 ment the decision has to be taken. The second only says that the
 individual has a schedule of alternatives with respect to the next price

 change, as judged from his present position (xl0, p10). After he has taken
 a decision in response to a price change, so that he no longer is in the

 position (xl0, p10), he might change his schedule of alternatives, because
 from the new position he might "see things differently."

 If the individual has a fixed demand schedule that is independent
 of the point on it where he is at any given moment [i.e., a schedule of
 type (6.2) ], then, of course, a historical record of prices and correspond-
 ing quantities consumed would represent points on this demand sched-
 ule, and we could use it for predicting the consumption for any given
 value of the price (under the assumption, as before, that other prices
 did not change). On the other hand, if the demand schedule depends
 upon the actual position of the individual, there might, for each such
 actual position, be a perfectly well-defined schedule of alternatives,
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 20 THE PROBABILITY APPROACH IN ECONOMETRICS

 which, if we knew it, would allow us to predict the quantity that would

 be bought if the price were changed from pil to pi', say. But as soon as
 the new position (pi', xi') is actually reached, we might need another
 schedule, f' say, to predict the quantity bought if the price were

 changed from pi' to pi", say. The two situations are illustrated graph-
 ically in Figures 1 and 2.

 P, XI

 FIGURE 1.-Reversible Demand FIGURE 2.-" Milieu"-affected De-
 Schedule. mand Schedule. Irreversible Demand

 Process.

 In Figure 2 a historical record of the actual positions (pi0, xi'),
 (pi', xi'), etc., would not form points on any fixed demand curve. And
 if we should fit some curve through these points of actual positions,

 such a curve could not be used for predicting the effect of the next price
 change. To find the demand schedule of the individual at a given mo-
 ment we should have to interview him, asking him what he would do
 if the price were changed alternatively by certain amounts.

 We might consider Figure 1 as a static scheme, while Figure 2 repre-
 sents a dynamic one, because in Figure 1 the sequence of price changes
 is irrelevant, while in Figure 2 it is essential. However, we do not here
 emphasize so much the time succession of the price-quantity changes
 as the fact that the actual carrying out of a planned decision may bring
 the individual into a new "milieu," so to speak, where he feels differ-
 ently from the way that he thought he would feel before he got there.

 If, actually, a set-up like that in Figure 2 is nearer to reality than
 that in Figure 1, then, naturally, an attempt to use the scheme in Fig-
 ure 1 would fail. On the other hand, if the theory operates with
 "milieu"-bound schedules like those in Figure 2, then historical records
 of actual price-quantity combinations are simply not the data that are
 relevant to the theory.

 An irreversible scheme like that in Figure 2 may often be reduced to
 a reversible one by introducing more variables. We might, e.g., assume
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 that the demand schedules in Figure 2 change in a regular manner with
 the initial positions with which they are associated. Let the variables

 xJ, pi be the quantity and price that represent actual positions of the
 individual, and let (xi, pi) be any point on the demand schedule through
 (xl, pi). It might be that the individual's behavior could be described
 by a relation of the type

 (6.4) xi = F(pb, xl, pI),

 where F is such that

 (6.4') xl = F(fi1, Xl, p).

 This function would then be compatible with the time series for actual
 prices and quantities consumed. More specifically, each pair of suc-

 cessive points representing actual positions would satisfy (6.4); i.e., if

 (0, pl?) and (xi', pi') be two such successive points, we should have

 (6.5) x1'=F(fil', x10, P1?).

 We could then determine the parameters of F from the actual time se-
 ries, and then, by (6.4), we could calculate the demand schedule for any

 given initial point (xl, Pi).
 This scheme would probably be too simple. In general we should

 probably have to introduce as variables, not only the instantaneous

 position of the individual, but also the whole sequence of past posi-
 tions, as well as the lengths of the time intervals between the price
 changes. And the situation would, of course, be still more complicated
 when all the other prices also varied. This was excluded in our discus-
 sion above. Whether or not it be actually possible in this way to fit
 historical records into schemes of reversible relationships is a question
 which cannot be answered a priori. We have to try to find out.

 Beside difficulties of the type discussed above, which seem-in point
 of principle-very simple and clear ones, I do not see that economic
 time series have any other "mystic" property that makes them in-
 compatible with economic theory.

 7. The Question of Simplicity in the Formulation of Economic Laws

 Let y denote an economic variable, the observed values of which may
 be considered as results of planned economic decisions taken by in-
 dividuals, firms, etc. (e.g., y might be the annual consumption of a
 certain commodity within a certain group of individuals, or the annual
 amount they save out of their income, etc.; or, it might be the rate of
 production in a monopolized industry, or monthly imports of a certain
 raw material, etc., etc.). And let us start from the assumption that the
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 variable y, is influenced by a number of causal factors. This viewpoint
 is something that is deeply rooted in our way of reasoning about the
 things we observe in reality. We do not need to take the notions of
 cause and effect in any metaphysical sense. What we mean is simply
 that the individuals, firms, etc., are bound in their planning and de-
 cisions by a set of conditions that are data in the process of adaptation.
 Within the limits of these given conditions the adaptation process
 consists in choosing what is deemed the "best" decision, in some sense
 or another. And we assume that the individuals have a system of prefer-
 ence schedules which determine "best decisions" corresponding to any
 given set of choice-limiting conditions. We, therefore, have the follow-
 ing scheme:

 Given conditions System of "Best decision"
 (7.1) (the independent , preference (the dependent[.

 variables) s chedules variables)

 If the system of preference schedules establishes a correspondence
 between sets of given conditions and "best decisions," such that for
 each set of conditions there is one and only one best decision, we may
 "jump over" the middle link in (7.1), and say that the decisions of in-
 dividuals, firms, or groups, are determined by the system of given choice-
 limiting conditions (the independent variables).

 In point of principle there may, perhaps, appear to be some logical
 difficulties involved in operating with such one-way, or causal relation-
 ships. In fact, modern economists have stressed very much the neces-
 sity of operating with relations of the mutual-dependence type, rather
 than relations of the cause-effect type. However, both types of rela-
 tions have, I think, their place in economic theory; and, moreover, they
 are not necessarily opposed to each other, because a system of relations
 of the mutual-dependence type for the economy as a whole may be
 built up from open systems of causal relations within the various sectors
 of the economy. The causal factors (or the "independent variables")
 for one section of the economy may, themselves, be dependent variables
 in another section, while here the dependent variables from the first
 section enter as independent variables. The essential thing is that,
 while for the economy as a whole everything depends upon everything
 else, so to speak, there are, for each individual, firm, or group, certain
 factors which this individual, firm, or group considers as data. The no-
 tion of causal factors is of a relative character, rather than an absolute
 one.

 Let us, therefore, accept the point of view that decisions to produce,
 to consume, to save, etc., are influenced by a number of quantitatively
 defined relative causal factors xl, X2, * . Our hope in economic theory
 and research is that it may be possible to establish constant and rela-
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 tively simple relations between dependent variables, y (of the type

 described above), and a relatively small number of independent vari-
 ables, x. In other words, we hope that, for each variable, y, to be "ex-
 plained," there is a relatively small number of explaining factors the

 variations of which are practically decisive in determining the varia-
 tions of y. (The problem of simplicity of the form of a relationship is
 usually far less important than that of the number of variables in-
 volved, because, if we know there is a functional relationship at all,

 it is, usually, possible to approximate it, e.g., by expanding the function

 in series.)
 Whether or not such simple relations can be established must be de-

 cided by actual trials. A priori it can neither be shown to be possible
 nor proved impossible. But we may do something else, which may give

 us some hint as to how optimistic or pessimistic we have reason to be:
 we can try to indicate what would have to be the actual situation in
 order that there should be no hope of establishing simple and stable
 causal relations.

 First of all, it is necessary to define what we mean by the "influence"

 of an economic factor. This expression, as used in the economic litera-
 ture, seems to have several different meanings. We shall distinguish

 between two different notions of "influence," which we shall call po-

 tential influence, and factual influence respectively. We shall first define
 these two concepts in a purely formal way.

 Let y' be a theoretical variable defined as a function of n independent

 "causal" variables xi, X2, * , x", e.g.,

 (7.2) y = f(xl, X2, - - *, X.),

 where f is defined within a certain domain of the variables x. The poten-
 tial influence of the factor x, upon y' we shall define as A,y' given by

 (7.3) Aiy' = f[xl, X2, * , (xi + Ax,), * * * A x,] - f(xl, X2, * n)

 where Ax, is a positive magnitude such that xi+Ax, is within the do-
 main of definition of f. It is clear that this quantity Aiy' will, in general,
 depend upon the variables x as well as upon the value of Axi. And, fur-
 thermore, what we shall mean by a large or a small Ax, depends, of
 course, upon the units of measurement of the variables x. To compare
 the size of the influence of each of the variables x we have, for any point

 (xl, x2, . x.X), to choose a set of displacements Ax,, Ax2, . . . ,Ax,
 which are considered to be of equal size according to some standard of
 judgment. (E.g., one particular such standard would be to define the

 increments Axi at any point in the space of the variables x as constant
 and equal percentages of xi, x2, * , x, respectively.) For a given sys-
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 tem of displacements Ax,, Ax2, * , Ax,,, the potential influences are,
 clearly, formal properties of the function f.

 Now, let us define the notion of factual influence of xi upon y'. In
 contrast to the potential influence, the factual influence refers to a set
 of values of y' corresponding to a set of value systems of the variables

 xl, X2, * * x., chosen according to some outside principle. Let

 YlI, Xll, X21, . ' Xnl,

 (7.4) Y2', X12, X22, * * Xn2,

 YN , X1N, X2N, * * XnN,

 be a set of N such value systems. By the factual influence of xi upon y'
 within this set of value systems we mean, broadly speaking, the parts of

 Yi', I2, * *, YN that may be ascribed to the variations in xi. This
 could be defined quantitatively in various ways. One way would be the

 following: Let us replace the variable xi in (7.2) by a constant, ci say,
 so determined that

 N

 Qi = Ej[f(xly, x2j, ..., xI, * * , X,j)
 (7.5) 1

 -Jf(Xlj, X2j, .. * * C$, .. * * XJ]2

 = minimum with respect to ci,

 assuming that such a minimum exists. The factual influence upon y' of
 the variable xi in the system (7.4) could then, for example, be defined
 as: Constant VQ.(min.).

 From the definitions above it is clear that the potential influence of
 a factor may be large, while-at the same time-the factual influence

 of this factor in a particular set of data may be zero or very small. And,
 conversely, the factual influences may be very large even if the po-
 tential influence is small (but not identically zero).

 This distinction is fundamental. For, if we are trying to explain a
 certain observable variable, y, by a system of causal factors, there is,
 in general, no limit to the number of such factors that might have a
 potential influence upon y. But Nature may limit the number of factors
 that have a nonnegligible factual influence to a relatively small number.
 Our hope for simple laws in economics rests upon the assumption that
 we may proceed as if such natural limitations of the number of relevant
 factors exist. We shall now discuss this a little more closely.
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 Suppose that, out of a-possibly infinite-number of factors

 xl, X2, ** *, with a potential influence upon y, we pick out a rela-

 tively small number, say xi, x2, . ., x,n and consider a certain function

 (7.6) y* = U(x1, x2, * * * , xn)

 of these variables. Suppose that, if all the other factors, Xn+i, X,t+2, . *
 (assuming them to be denumerable) did not vary, we should have y-y*
 for every observed value-set (y, xl, X2, ..., x n). Would the knowledge
 of such a relationship help us to "explain" the actual, observed values
 of y? It would, provided the factual influence of all the unspecified

 factors together were very small as compared with the factual influence

 of the specified factors x1, x2, ..., x n. This might be the case even if
 (1) the unspecified factors varied considerably, provided their potential
 influence was very small, or if (2) the potential influences of the un-

 specified factors were considerable, but at the same time these factors
 did not change much, or did so only very seldom as compared with the
 specified factors.

 On the other hand, suppose that all the factors xi, x2, ..** X,
 x.+,, - * *, or at least a very large number of them, were of the following
 type: (1) Each factor x has a considerable potential influence upon y;
 (2) each x varies usually very little, but occasionally some great varia-
 tions occur. Since there are a great many factors x, we might then still
 have great variations going on almost all the time, in one factor or the
 other. To pick out a small number of factors x, assuming the rest to be

 constant, would then be of very little help in "explaining" the actual
 variations observed for y, i.e., relations of the form (7.6) would show
 very little persistence over time if y were substituted for y*, simply

 because the ceteris paribus conditions, xn+1 = constant, Xn+2 =constant,
 etc., would be no approximation to reality. From the point of view of

 "explaining" reality, we might then say that it would be practically
 impossible to construct a theory such that its associated design of ex-

 periments would approximate that followed by Nature. From the point
 of view of verifying certain simplified relations of theory we might say

 that, under the situation just described, it would be impossible to find
 data for such a purpose by the method of passive observation.

 What is the actual situation as we know it from experience in eco-
 nomic research? Do we actually need to consider an enormous number

 of factors to "explain" decisions to produce, to consume, etc.? I think
 our experience is rather to the contrary. Whenever we try, a priori, to
 specify what we should think to be "important factors," our imagina-
 tion is usually exhausted rather quickly; and when we attempt to apply
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 our theory to actual data (e.g., by using certain regression methods),
 we often find that even a great many of the factors in our a priori list
 turn out to have practically no factual influence.

 Frequently, our greatest difficulty in economic research does not lie
 in establishing simple relations between actual observation series, but
 rather in the fact that the observable relations, over certain time inter-
 vals, appear to be still simpler than we expect them to be from theory,
 so that we are thereby led to throw away elements of a theory that would
 be sufficient to explain apparent "breaks in structure" later. This is the
 problem of autonomy of economic relations, which we now shall discuss.

 8. The Autonomy of an Economic Relation

 Every research worker in the field of economics has, probably, had
 the following experience: When we try to apply relations established
 by economic theory to actually observed series for the variables in-
 volved, we frequently find that the theoretical relations are "unneces-
 sarily complicated"; we can do well with fewer variables than assumed
 a priori. But we also know that, when we try to make predictions by
 such simplified relations for a new set of data, the relations often break
 down, i.e., there appears to be a break in the structure of the data. For
 the new set of data we might also find a simple relation, but a different
 one. Even if no such breaks appear, we are puzzled by this unexpected
 simplicity, because, from our theoretical considerations we have the
 feeling that economic life is capable of producing variations of a much
 more general type. Sometimes, of course, this situation may be ex-
 plained directly by the fact that we have included in our theory factors
 which have no potential influence upon the variables to be explained.
 But more frequently, I think, the puzzle is a result of confusing two
 different kinds of variations of economic variables, namely hypothetical,
 free variations, and variations which are restricted by a system of simul-
 taneous relations.

 We see this difference best by considering the rational operations by
 which a theoretical system of relations is constructed. Such systems
 represent attempts to reconstruct, in a simplified way, the mechanisms
 which we think lie behind the phenomena we observe in the real world.
 In trying to rebuild these mechanisms we consider one relationship at
 a time.

 Suppose, e.g., we are considering n theoretical variables
 x1', x2', , x, , to be compared with n observational variables
 X1, X2, .., x", respectively. We impose certain relations between
 the n theoretical variables, of such a type that we think the theo-
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 retical variables, so restricted, will show some correspondence with the
 observed variables.

 Let us consider one such particular relation, say xl'=f(x2', X,')
 In constructing such a relation, we reason in the following way: If x2'
 be such and such, X3' such and such, etc., then this implies a certain
 value of x1'. In this process we do not question whether these "ifs" can
 actually occur or not. When we impose more relations upon the vari-
 ables, a great many of these "ifs," which were possible for the relation
 xl' =f separately, may be impossible, because they violate the other
 relations. After having imposed a whole system of relations, there may
 not be very much left of all the hypothetical variation with which we
 started out. At the same time, if we have made a lucky choice of theo-
 retical relations, it may be that the possible variations that are left
 over agree well with those of the observed variables.

 But why do we start out with much more general variations than
 those we finally need? For example, suppose that the Walrasian system
 of general-equilibrium relations were a true picture of reality; what
 would be gained by operating with this general system, as compared
 with the simple statement that each of the quantities involved is equal
 to a constant? The gain is this: In setting up the different general rela-
 tions we conceive of a wider set of possibilities that might correspond to
 reality, were it ruled by one of the relations only. The simultaneous
 system of relations gives us an explanation of the fact that, out of this
 enormous set of possibilities, only one very particular one actually
 emerges. But once this is established, could we not then forget about
 the whole process, and keep to the much simpler picture that is the
 actual one? Here is where the problem of autonomy of an economic rela-
 tion comes in. The meaning of this notion, and its importance, can, I
 think, be rather well illustrated by the following mechanical analogy:

 If we should make a series of speed tests with an automobile, driving
 on a flat, dry road, we might be able to establish a very accurate func-
 tional relationship between the pressure on the gas throttle (or the
 distance of the gas pedal from the bottom of the car) and the corre-
 sponding maximum speed of the car. And the knowledge of this rela-
 tionship might be sufficient to operate the car at a prescribed speed.
 But if a man did not know anything about automobiles, and he wanted
 to understand how they work, we should not advise him to spend time
 and effort in measuring a relationship like that. Why? Because (1) such
 a relation leaves the whole inner mechanism of a car in complete mys-
 tery, and (2) such a relation might break down at any time, as soon as
 there is some disorder or change in any working part of the car. (Com-
 pare this, e.g., with the well-known lag-relations between the Harvard
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 A-B-C-curves.) We say that such a relation has very little autonomy,3
 because its existence depends upon the simultaneous fulfilment of a
 great many other relations, some of which are of a transitory nature.
 On the other hand, the general laws of thermodynamics, the dynamics
 of friction, etc., etc., are highly autonomous relations with respect to
 the automobile mechanism, because these relations describe the func-
 tioning of some parts of the mechanism irrespective of what happens
 in some other parts.

 Let us turn from this analogy to the mechanisms of economic life.
 Economic theory builds on the assumption that individuals' decisions
 to produce and to consume can be described by certain fundamental
 behavioristic relations, and that, besides, there are certain technical
 and institutional restrictions upon the freedom of choice (such as tech-
 nical production functions, legal restrictions, etc.).

 A particular system of such relationships defines one particular theo-
 retical structure of the economy; that is to say, it defines a theoretical
 set of possible simultaneous sets of value or sets of time series for the
 economic variables. It might be necessary-and that is the task of
 economic theory-to consider various alternatives to such systems of
 relationships, that is, various alternative structures that might, ap-
 proximately, correspond to economic reality at any time. For the "real
 structure" might, and usually does, change in various respects.

 To make this idea more precise, suppose that it be possible to define
 a class, Q, of structures, such that one member or another of this class
 would, approximately, describe economic reality in any practically con-
 ceivable situation. And suppose that we define some nonnegative measure
 of the "size" (or of the "importance" or "credibility") of any subclass,
 X in Q, including Q itself, such that, if a subclass contains completely
 another subclass, the measure of the former is greater than, or at
 least equal to, that of the latter, and such that the measure of Q is
 positive. Now consider a particular subclass (of Q), containing all
 those-and only those-structures that satisfy a particular relation
 "A." Let WA be this particular subclass. (E.g., WA might be the sub-
 class of all those structures that satisfy a particular demand func-
 tion "A.") We then say that the relation "A" is autonomous with
 respect to the subclass of structures (OA. And we say that "A" has a

 3This term, together with many ideas to the analysis in the present section,
 I have taken from a mimeographed paper by Ragnar Frisch: "Statistical versus
 Theoretical Relations in Economic Macro-Dynamics" (Mimeographed memo-
 randum prepared for the Business Cycle Conference at Cambridge, England,
 July 18-20, 1938, to discuss J. Tinbergen's publication of 1938 for the League of
 Nations.)
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 degree of autonomy which is the greater the larger be the "size" of WA
 as compared with that of Q.

 The principal task of economic theory is to establish such relations
 as might be expected to possess as high a degree of autonomy as possible.

 Any relation that is derived by combining two or more relations
 within a system, we call a confluent relation. Such a confluent relation
 has, of course, usually a lower degree of autonomy (and never a higher

 one) than each of the relations from which it was derived, and all the
 more so the greater the number of different relations upon which it
 depends. From a system of relations, with a certain degree of autonomy,
 we may derive an infinity of systems of confluent relations. How can
 we actually distinguish between the "original" system and a derived
 system of confluent relations? That is not a problem of mathematical

 independence or the like; more generally, it is not a problem of pure
 logic, but a problem of actually knowing something about real phe-
 nomena, and of making realistic assumptions about them. In trying

 to establish relations with high degree of autonomy we take into con-

 sideration various changes in the economic structure which might up-
 set our relations, we try to dig down to such relationships as actually

 might be expected to have a great degree of invariance with respect to
 certain changes in structure that are "reasonable."

 It is obvious that the autonomy of a relation is a highly relative con-

 cept, in the sense that any system of hypothetical relations between
 real phenomena might itself be deducible from another, still more basic
 system, i.e., a system with still higher degree of autonomy with respect
 to structural changes.

 The construction of systems of autonomous relations is, therefore, a

 matter of intuition and factual knowledge; it is an art.
 What is the connection between the degree of autonomy of a relation

 and its observable degree of constancy or persistence?

 If we should take constancy or persistence to mean simply invariance
 with respect to certain hypothetical changes in structure, then the de-
 gree of constancy and the degree of autonomy would simply be two

 different names for the same property of an economic relation. But if
 we consider the constancy of a relation as a property of the behavior of
 actual observations, then there is clearly a difference between the two
 properties, because then the degree of autonomy refers to a class of

 hypothetical variations in structure, for which the relation would be in-
 variant, while its actual persistence depends upon what variations ac-
 tually occur. On the other hand, if we always try to form such relations
 as are autonomous with respect to those changes that are in fact most
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 likely to occur, and if we succeed in doing so, then, of course, there will
 be a very close connection between actual persistence and theoretical
 degree of autonomy. To bring out these ideas a little more clearly we
 shall consider a purely formal set-up.

 Suppose we have an economic system, the mechanism of which
 might be characterized by the variations of n measurable quantities
 x1, X2, ... *, xn. Suppose that the structure of this mechanism could be
 described by a system of m <n equations,

 (8.1) fi(xl, x2,) , xn) = 0 (i = 1, 2,. ,m).

 (n - m) of the variables-let them be xm+1, Xm+2, * , xw--are assumed
 to be given from outside. From the system (8.1) it might, e.g., be pos-
 sible to express each of the first m variables uniquely in terms of the
 n-m remaining ones. Let such a solution be

 Xj = Ui (Xm+li Xm+2, . * Xn).

 X2 = U2 (Xm+1, Xm+22 .. ** Xn),
 (8.2)

 . . . . . . . . . . . .

 Xm = Um(Xm+l Xm+22 .. * Xn),

 The system (8.2) would describe the covariations of the variables just
 as well as would the original system (8.1). But suppose now that there
 should be a change in structure of the following type: One of the func-
 tions fi in (8.1), say fl, is replaced by another function, say fl', while all
 the other relations in (8.1) remain unchanged. In general, this would
 change the whole system (8.2), and if we did not change the system
 (8.2) [e.g., because we did not know the original system (8.1)], some
 or all of its relations would show lack of constancy with respect to the
 observations that would result from the new structure. On the other
 hand, the last mr-1 equations in (8.1) would-by definition-still hold
 good, unaffected by the structural change. It might be that, as a matter
 of fact, one or two particular equations in (8.1) would break down very
 often, while the others remained valid. Then any system (8.2) corre-
 sponding to a fixed system (8.1) would show little persistence with re-
 spect to the actual observations.

 In this scheme the variables xm+i, Xm+2, * , x,,, were, in point of
 principle, free: they might move in any arbitrary way. This includes
 also the possibility that, e.g., all these free variables might move as
 certain well-defined functions of time, e.g.,
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 Xm+1 = gi(t)X

 (8.3) Xm+2 92(t),

 Xn g-9nm (t) .

 As long as this should hold, we might be able to express the variables
 Xl, X2, . . *, xm, as functions of xm+l, Xm+2, ... *, x, in many different
 ways. For example, it might be possible to express xi as a function of
 x", say

 (8.4) xi = F(xn).

 But could this relation be used to judge the effect upon xi of various
 arbitrary changes in x,n? Obviously not, because the very existence of
 (8.4) rests upon the assumption that (8.3) holds. The relation (8.4)
 might be highly unstable for such arbitrary changes, and the eventual
 persistence observed for (8.4) in the past when (8.3) held good, would
 not mean anything in this new situation. In the next situation the origi-
 nal system (8.1), or even system (8.2), would still be good, if we knew
 it. But to find such a basic system of highly autonomous relations in an

 actual case is not an analytical process, it is a task of making fruitful
 hypotheses as to how reality actually is.

 We shall illustrate these points by two examples.
 First we shall consider a scheme which, I think, has some bearing

 upon the problem of deriving demand curves from time series.
 Let x be the rate of per capita consumption of a commodity in a

 group of people who all have equal money income, R. Let p be the price
 of the commodity, and let P be an index of cost of living. Assume that
 the following demand function is actually true:

 P R
 (8.5) x = ap + b + c + e,

 P P

 where a, b, c, are certain constants, and e is a random variable'with
 "rather small" variance, and such that the expected values of x are

 (8.6) E x p )=a p + b + c.

 Assume that (8.5) is autonomous in the following sense: For any arbi-
 trary values of p/P and RIP, the corresponding value of x can be
 estimated by (8.6). Suppose we are interested only in variations that
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 are small relative to certain constant levels of the variables. Then we

 may approximate (8.5) by a linear relation in the following way: Let

 po, Ro, and Po be the average values of p, R, and P respectively. Then
 we have

 po + (p-po) Ro + (R-Ro)
 x=a -- +b - + c+ e

 Po + (P-Po) Po + (P-PO)

 po + (p-po) 1

 Po P-Po
 1 +

 Ro + (R-Ro) 1
 + b-- 1+p _P + c + P

 (8.5')

 po + (P-Po) - Po

 Po POl

 Ro + (R-Ro) (1- P oPo)

 a apO apo a(p - po)(P - Po)

 P po2 pP2

 b bRo bRo b(R-Ro)(P-Po)
 + R - - P+ - -- - + c+ e.
 Po P02 P0 p02

 If the deviations (p-po), (P-PO), and (R-Ro) are small compared
 with po, Po, and Ro, we may neglect product terms of these deviations.
 Then we obtain

 (8.7) x = Ap + BR + CP + D +e',

 where

 a b lapo bRo) apo bRo

 Po PO 02 p02/ P0 PO

 and where E' is a new residual term now also containing the errors made
 by the above approximation. For small variations of the variables,
 et may not be practically distinguishable from e.
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 What we shall now show is that, if the data for p, P, and R, to be
 used for deriving the demand function have, for some reason or another,
 happened to move as certain regular functions of time, there may in
 these data exist another relation which has exactly the same form as

 (8.7), but different coefficients, and which may fit the data still better
 than (8.7) would do in general. And if we mistake this other relation
 for (8.7), we get merely a confluent relationship, and not an approxima-
 tion to the demand function (8.5).

 To see this let us write (8.5) as

 p(t) R(t)
 (8.5") x(t) =a + b + c +

 P(t) P(t)

 Assume now that the time functions p(t), P(t), and R(t)-for some rea-
 son-happen to be such that they satisfy the functional relations

 (8.8) p(t) = kip(t) + k2P(t) + ko,

 (8.9) R(t) - miR(t) + m2P(t) + MO,
 P(t)

 where the k's and the m's are certain constants. A wide class of elemen-
 tary time functions satisfy such functional equations. And whenever
 this is the case for the actual observations of p, P, and R, an equation
 of the form (8.7) could be fitted to the data. But we could not use the
 equation thus obtained for predicting the effect of an arbitrary price
 change, or an arbitrary income change, because this equation is not in
 general an approximation to (8.5) but merely a confluent result of
 (8.5), (8.8), and (8.9). It, therefore, does not hold, e.g., for price changes
 which violate (8.8), (8.9), or both.

 In general, we have to be very careful in using a particular set of
 data to modify the form of relationships which we have arrived at on
 strong theoretical grounds. For example, in the case above we might be
 led to conclude that (8.7) might be a more correct "form" of the de-
 mand function than (8.5), or at least as good, while actually, when (8.8)
 and (8.9) are fulfilled, we may obtain a relationship of the form (8.7),
 which is not a demand function at all, and which breaks down as soon
 as p(t), P(t), and R(t) take on some other time shape.

 As an illustration to the question of autonomy of an economic rela-
 tion with respect to a change in economic policy, let us consider the eco-
 nomic model underlying the famous Wicksellian theory of interest rates
 and commodity prices. (For the sake of simplicity and shortness we
 shall, however, make somewhat more restrictive assumptions than
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 Wicksell himself did. Our model does not do full justice to Wicksell's
 profound ideas.)

 Consider a society where there are only three different economic
 groups: (a) individuals, (b) private firms, and (c) banks. We assume

 that: (1) All individuals divide their income into two parts, one part
 consisting of spending+increase in cashholding, the other part being
 saved, and all savings go into banks as (time) deposits. There is no
 other saving in the society. (2) All production in the society takes place
 in firms. The firms are impersonal organizations, guided in their produc-

 tion policy by profit expectations only. They can make new investments
 by means of bank loans only. They distribute all their profit to in-
 dividuals. (3) Prices of goods and services of all kinds vary proportion-
 ally through time, and may be represented by a common variable,
 called the price level. (4) The banks have the power of expanding or
 contracting credit. We assume that there is only one money rate of
 interest, which is the same for all banks and the same for loans as for

 deposits. (This gives a rough description of the model we are going to
 discuss. It is hardly possible to give an exhaustive description of a
 model in words. The precise description is given implicitly through the
 relations imposed in the model.)

 We are principally interested in the price effect of certain changes
 in the credit policy of the banks.

 Let us introduce the following notations:

 (1) S(t) =total saving per unit of time,

 (2) I(t) =total investment per unit of time,

 (3) p(t) =bank rate of interest at point of time t,

 (4) P(t) =price level at point of time t,

 (5) R(t) =total national income per unit of time.

 Now we shall introduce a system of fundamental relations describing
 the mechanism of our model. We consider linear relations, for sim-
 plicity.

 First, we assume that there exists a market supply function for sav-
 ings of the following form.

 (8.10) S(t) = ao + alp(t) + a2P(t) + asP(t) + aJR(t).

 This equation says that the supply of savings (bank deposits)-apart

 from a constant-depends upon the rate of interest, the total income,
 the price level, and the expectations regarding the future real value of

 money saved, as represented by the rate of change in the price level

 p(t). It might be realistic to assume that a, and a4 are positive, a2 and a3
 negative.
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 Next, we assume the following demand function for bank loans:

 (8.11) I(t) bo + bip(t) + b2P(t) + b3P(t),

 where bi is negative and b3 positive, while the sign of b2 may be uncer-
 tain, a priori. b3 would be positive because, when the price level is in-
 creasing, the firms expect to buy factors of production in a less expen-
 sive market than that in which they later sell the finished products, and

 this profit element is an inducement to invest.

 Now, if the banks should lend to firms an amount equal to deposits,
 neither more nor less, i.e., if

 (8.12) I(t) = S(t)

 then it follows from (8.10), (8.11), and (8.12), that to each value of
 R(t), P(t), and 15(t), there would correspond a certain market equilib-
 rium rate of interest, p(t), called by Wicksell the normal rate. That is,
 we should have

 bo -ao b2- a2 bs- . a4
 p(t) = + P(t) + P(t) - R(t)

 = Ao + A,P(t) + A2P(t) + A3R(t),

 where p(t) is a value of p(t) satisfying (8.10), (8.11), and (8.12), and
 where the A's are abbreviated notations for the coefficients in the mid-
 dle term.

 If the banks want, actively, to expand or contract currency (that is,
 if they want to change that amount of money outside the banks), they
 have to fix a rate of interest p(t), which differs from p(t) as defined by

 (8.13). [Note that p(t) is by no means a constant over time.] From
 (8.10) and (8.11) we get

 8.14) I(t) -S(t) = (bo - ao) + (b- aj)p(t) + (b2- a2)P(t)
 + (b3 - a3)P(t)- a4R(t),

 which, for p (t) = p(t), reduces to

 (8.15) ?0 (bo - ao) + (b- aj)p(t) + (b2 -a2)P(t)
 + (b3 - a3)P(t)- a4R(t).

 Subtracting (8.15) from (8.14) we obtain

 (8.16) I(t) - S(t) = (b - a,) [p(t) -(t)

 which tells us that the amount of "money inflation," I(t)-S(t), is
 (negatively) proportional to the difference between the actual bank rate
 of interest and the normal rate as defined by (8.13).
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 Assuming the "inflation" stream I(t) - S(t) (taken as a barometer
 for total spending) to be accompanied by a proportional rise in the
 price level, we have

 (8.17) P(t) = k [I (t) -S(t)] (k a positive constant).

 Combining (8.16) and (8.17) we obtain

 (8.18) P(t) = k(b, - a,)[p(t) -(t)

 which is a simplified expression for Wicksell's fundamental theorem
 about the price effect of a bank rate of interest that differs from the
 normal rate.

 Accepting this theory (we are not interested in analyzing its actual

 validity any further in this connection, as we use it merely for illus-
 tration), what would be the degree of autonomy of the three equations
 (8.16), (8.17), and (8.18)?

 Let us first consider the equation (8.16). Its validity in our set-up
 rests upon the two fundamental relations (8.10) and (8.11). In setting
 up these two equations we did not impose any restrictions upon the
 time shape of the functions p(t), P(t), and R(t). Therefore, by hypothe-
 sis, whatever be the time shape of these functions, the corresponding
 time shapes of I(t) and S(t)-and, therefore, also the time shape of
 I(t)-S(t)-follow from (8.10) and (8.11). [(8.16) is merely another
 way of calculating the difference I(t)-S(t).] From (8.13) it follows
 that to each pair of time functions P(t) [provided its derivative P(t)

 exists] and R(t) there corresponds a time function p(t), while to each
 given time function p(t) there corresponds, in general, an infinity of time

 functions P(t) and R(t). The equation (8.16) is, therefore-by assump-
 tion-autonomous in the following sense: For any arbitrarily chosen
 time functions for p(t) and p(t) the credit inflation I(t) -S(t) can be
 calculated from (8.16).

 We should notice that this property of (8.16)-if true-is not a
 mathematical property of the equation: it cannot be found by looking
 at the equation. It rests upon a hypothesis as to how the difference
 I(t) -S(t) in fact would behave for various arbitrary changes in the
 interest rate and the normal rate. In another model we might obtain

 an equation of exactly the same form, but without the same property
 of autonomy. For example, assume that-as a consequence of some
 model, whatever be the particular economic reasoning underlying it-
 all the time functions above were bound to follow certain linear trends.
 In particular, suppose that we had I(t) -S(t) = mt, p(t) - p(t) = nt. We
 should then have

 (8.19) I(t) - S(t) =-[p(t) -(t)
 n
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 which is of the form (8.16). But from (8.19) we could not calculate the

 effect upon I(t) - S(t) of, say, various types of interest policy, because
 any changes in p(t) that would violate the condition p(t)-p(t)=nt
 would break up the very foundation upon which (8.19) rests. The equa-
 tion (8.19) might still hold after such a break, but that would have to
 follow from another model.

 The equation (8.17) represents, per se, also an autonomous relation
 with respect to certain changes in structure. It is an independent hy-

 pothesis about the price level, saying that, whatever be the credit
 inflation I(t) - S(t), we may calculate the corresponding rate of change
 in the price level. Here too, we cannot know how far this property of

 autonomy would in fact be true. It is an assumption, and it is a task
 of economic theory and research to justify it.

 Let it be established that (8.16) and (8.17) are, in fact, highly autono-

 mous relations. What is the situation with respect to the equation
 (8.18)? Obviously (8.18) would have a smaller degree of autonomy than
 either (8.16) or (8.17) separately, because the class of time functions

 satisfying (8.18) is-by definition-only the class of functions that
 satisfy (8.16) and (8.17) jointly.

 So far we have not assumed any definite relations describing the
 credit policy of the banks. We have merely described the behavior of
 individuals and firms in response to a given bank rate of interest.

 Starting from certain assumptions as to the willingness to save and to
 invest, and assuming that an inflow of extra credit into the market

 causes a proportional change in the price level, we have obtained two
 structural relations (8.16) and (8.17). The variable p(t) was considered
 as a free parameter. It might be, however, that the banks, over a cer-
 tain period of time at least, choose to follow a certain pattern in their
 interest policy, or that they have to do so in order to secure their own

 liquidity. Over this period of time it might then be that we could add
 a new relation to the ones above, namely a relation describing-tem-
 porarily-the banking policy. Assume for instance, that the banks,
 over a certain period of time, act as follows: Whenever they realize
 that I(t) - S(t) has become positive they start raising the interest rate,
 in order to protect their liquidity, and, conversely, they lower the rate
 of interest when they realize a negative I(t) -S(t). Such a policy might
 be described by the relation

 (8.20) p(t) = c[I(t) - S(t)],

 where c is a positive constant. Because of (8.16) we have

 (8.21) p(t) = c(bi - a,)[p(t) -(t)].
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 And combining (8.18) and (8.21) we have

 (8.22) P(t) (t),
 c

 which apparently says that the price level moves in the same direction
 as the interest rate. But could we use this relation to calculate the
 "would-be" effect upon the price level of some arbitrary interest policy?

 Obviously not, because (8.22) holds only when R(t), I(t), S(t), P(t),
 p(t), and p(t) are such time functions as satisfy, simultaneously, (8.13),
 (8.16), (8.17), and (8.20). Therefore, (8.22) is of no use for judging the
 effect of a change in interest policy. To obtain an equation for this pur-
 pose we might combine (8.13) and (8.18), which give a relation of the
 form

 (8.23) P(t) + BP(t) = Hip(t) + H2R(t) + Ho,

 where B, H1, H2, and Ho are constants depending upon those in (8.13)
 and (8.18). Here there are-by hypothesis-no restrictions upon the

 time shape of the functions p(t) and R(t). We may choose such functions
 arbitrarily and solve the equation (8.23) to obtain P(t) as an explicit
 function of p(t) and R(t).

 But how could we know that (8.23) is the equation to use, and not
 (8.22)? There is no formal method by which to establish such a con-
 clusion. In fact, by starting from another model with different assump-
 tions, we might reach the opposite conclusion. To reach a decision we
 have to know or to imagine-on the basis of general experience-which
 of the two relations (8.22) or (8.23) would in fact be the most stable
 one if either of them were used as an autonomous relation.

 * * *

 To summarize this discussion on the problem of autonomous rela-
 tions: In scientific research-in the field of economics as well as in

 other fields-our search for "explanations" consists of digging down to
 more fundamental relations than those that appear before us when we
 merely "stand and look." Each of these fundamental relations we con-
 ceive of as invariant with respect to a much wider class of variations
 than those particular ones that are displayed before us in the natural
 course of events. Now, if the real phenomena we observe day by day
 are really ruled by the simultaneous action of a whole system of funda-
 mental laws, we see only very little of the whole class of hypothetical
 variations for which each of the fundamental relations might be as-
 sumed to hold. (This fact also raises very serious problems of estimating
 fundamental relations from current observations. This whole problem
 we shall discuss in Chapter V.) For the variations we observe, it is
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 possible to establish an infinity of relationships, simply by combining
 two or more of the fundamental relations in various ways. In particular,
 it might be possible to write one economic variable as a function of a set
 of other variables in a great variety of ways. To state, therefore, that
 an economic variable is "some function" of a certain set of other vari-
 ables, does not mean much, unless we specify in what "milieu" the
 relation is supposed to hold. This, of course, is just another aspect of
 the general rule we laid down at the beginning of this chapter: The rule
 that every theory should be accompanied by a design of experiments.
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 CHAPTER III

 STOCHASTICAL SCHEMES AS A BASIS FOR ECONOMETRICS

 From experience we know that attempts to establish exact functional
 relationships between observable economic variables would be futile. It

 would indeed be strange if it were otherwise, since economists would
 then find themselves in a more favorable position than any other re-

 search workers, including the astronomers. Actual observations, in
 whatever field we consider, will deviate more or less from any exact

 functional relationship we might try to establish. On the other hand,
 as we have seen, the testing of a theory involves the identification of
 its variables with some "true" observable variables. If in any given
 case we believe, even without trying, that such an identification would
 not work, that is only another way of saying that the theory would be
 false with respect to the "true" variables considered. In order that the
 testing of a theory shall have any meaning we must first agree to iden-
 tify the theoretical with the observable variables, and then see whether
 or not the observations contradict the theory.

 We can therefore, a priori, say something about a theory that we
 think might be true with respect to a system of observable variables,
 namely, that it must not exclude as impossible any value system of the
 "true" variables that we have already observed or that it is prac-
 tically conceivable to obtain in the future. But theories describing
 merely the set of values of the "true" variables that we conceive of
 as practically possible, would hardly ever tell us anything of practical
 use. Such statements would be much too broad. What we want are theo-
 ries that, without involving us in direct logical contradictions, state
 that the observations will as a rule cluster in a limited subset of the set
 of all conceivable observations, while it is still consistent with the the-
 ory that an observation falls outside this subset "now and then."

 As far as is known, the scheme of probability and random variables
 is, at least for the time being, the only scheme suitable for formulating
 such theories. We may have objections to using this scheme, but among
 these objections there is at least one that can be safely dismissed, viz.,
 the objection that the scheme of probability and random variables is
 not general enough for application to economic data. Since, however,
 this is apparently not commonly accepted by economists we find our-
 selves justified in starting our discussion in this chapter with a brief
 outline of the modern theory of stochastical variables, with particular
 emphasis on certain points that seem relevant to economics.

 -40-
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 9. Probability and Random Variables

 The more recent developments in statistical theory are based upon
 the so-called modernized classical theory of probability. Here "proba-
 bility" is defined as an absolutely additive and nonnegative set-func-
 tion,' satisfying certain formal properties.2

 Let us first take an example to illustrate this probability concept.

 1 See e.g. Stanislaw Saks, Theory of the Integral, New York, 1937; and Nicolas
 Lusin, Les ensembles analytiques, Paris, 1930.

 We shall make frequent use of the following common notations and definitions
 from the theory of sets:

 If A be a set of elements or objects, a, the symbol a c A is used to indicate that
 a is an element of A, or that a belongs to A.

 Let (A) be a family of sets A, and let A1 and A2 be two members of (A). If
 every element of A1 is also an element of A2, we say that A2 contains, or cov-
 ers, A1.

 The symbol A1 +A2 (called the logical sum of A1 and A2) indicates the set of
 all elements a which belong to at least one of the two sets A1 and A2. A1l A2 (called
 the logical product of Al and A2) indicates the set of all those elements a which
 belong to both A1 and A2 (i.e., their common part). These notions of sum and
 product may be extended to any sequence of sets, finite or infinite.

 If a product A1l A2 is empty, A1 and A2 are called disjunct sets.
 If A1 contains A2, A1-A2 is called the difference between A1 and A2, and de-

 notes the set of elements that belong to Al but not to A2.
 A family of sets that is such that (1) the summation of any, at most de-

 numerable, set of disjunct members of the family as well as (2) the subtraction

 A, -Ai of any two members where Ai is contained in Ai, give sets which belong
 to the family is called a Borel corpus. We denote it by {A }.

 Suppose that we associate, with each member, A, of {A}, a finite number
 F(A). Then F(A) is called a set-function. (For example, if A be an interval on a
 straight line, its length is a set-function.) The function F(A) is called additive if,

 for any arbitrary disjunct pair of sets A, and Ai in I A }, we have

 F(A; + Ai) = F(A,) + F(A,).

 F(A) is called absolutely additive if, for any at most denumerable set of disjunct

 subsets Al, A2, * * * , An, * . *, in {A }, we have

 F(A1+A2 + - - -+A.+ - - - )=F(Al) +F(A2) + *+F(A) +

 By the measure of a set A, belonging to a corpus { A }, we understand an ab-
 solutely additive set-function, m(A), such that m(A) 20, and m(A) =0 when A
 is empty. (Length, area, volume are simple examples of measures.)

 2 See e.g., J. Neyman, Lectures and Conferences on Mathematical Statistics,
 Washington, 1937, pp. 2-18; "L'estimation statistique trait6e comme un probleme
 classique de probabilit6," Actualit6s scientifiques et industrielles, 739, Conftrence
 internationales de sciences math6matiques, Paris, 1938, pp. 25-57; Paul Levy,
 Th6orie de l'addition des variables alUatoires, Paris, 1937; S. S. Wilks, Statistical
 Inference, 1936-37, Princeton, N. J., 1937; Mathematical Statistics, Princeton,
 1943.
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 Consider an ordinary die with six sides. For the purpose of probability
 calculus a die can be described as a set of 6 points on a straight line,
 x=1, 2, *. , 6. Consider now all the points on a straight line from
 - oo to + 00. Over this set of points (i.e., over the whole real axis) we

 define a nonnegative real measure-function (or, a system of "weights")
 of the following type:

 (1) To the point x = 1 we ascribe a measure P1, to the point x =2 we
 ascribe a measure P2, etc., to the point x = 6, finally, we ascribe a meas-
 ure P6, such that Pi > 0, i = 1, 2, , 6, and such that P1+P2+
 +P66=l.

 (2) If w be any subset of points (e.g., an interval) on the x-axis, the
 measure, P(w), of the set w is defined as the sum of the measures, Pi,
 of those points, if any, among the 6 particular points x = 1, 2, - - * , 6,
 which belong to the set w. (For example, the measure of a set w defined
 by 1_x<4 would be P1+P2+P3.)

 (3) If w does not contain any of the points x =1, 2, ,6, then, for
 any such w, P(w) = 0. [For example, if w is the interval 0? x < then
 P(w) = 0.] P(w), so defined, is called the probability that a point x be-
 longs to the point-set w, or, for short, the probability of w. It follows
 that, if w is the whole real axis, then P(w) = 1. If w contains just the
 point x = 1, or x =2, or , or x=6, then P(w) =P1, or P2, or
 or P6 respectively.

 Now let us consider n dice, Nos. 1, 2, , n, (or n hypothetical
 throws with the same die), all having the same system of probabilities
 P1, P2, * , P6. Let xi be the result of one throw with the ith die,
 i=1, 2, * * , n (i.e., xi= 1, or 2, or .., or 6, with the probabilities
 P1, P2, .. , P6, respectively, all other values of xi having the probabil-
 ity zero). Consider any possible system (xl, X2, . , x.n) of values of the
 n variables x, one for each die. Any such sequence xi, X2, . . ., x,n can
 be represented by a point in n-dimensional Euclidean space. If we de-
 fine the probability of any such point as the product of the probabilities
 of each of the x's separately, we may calculate the probability of an
 arbitrary point (x1, x2, * * *, x"), or more generally, the probability of
 any arbitrary set of points in the n-dimensional linear space. It is easy
 to see that the system of all such probabilities satisfies conditions ex-
 actly similar to (1)-(3) above. The only difference is that we now con-
 sider points in n-dimensional space, instead of points on a straight line.
 For example, we might calculate the probability that exactly k (no
 matter which) out of the n variables x have the value 6, i.e., the proba-
 bility of a point (xl, X2, * *, xn) having exactly k of its co-ordinates
 equal to 6. This probability is the sum of n!/k!(n-k)! products, each
 equal to P6k(J_p6)n-k, or
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 n!

 (9.a) k!(n - k)!P6k(1 _ P6)nn-k

 which is, of course, also the probability of a proportion of "sixes" equal
 to k/n. From the formula (9.a) we may calculate the total probability
 of a set of points in the n-dimensional x-space, corresponding to a whole
 system of values of k, simply by summing up the probabilities (9.a) for
 these values of k. Hence we might also calculate, e.g., the probability,
 P, say, of Pe - e ? k/n < P6+ E, where e is any positive number. It fol-
 lows from formula (9.a), as is well known, that if Pe be a finite number,

 and if a positive e be chosen, no matter how small, then P can be made
 as near to 1 as we please by choosing n sufficiently large.

 What is the usefulness, if any, of such a purely formal apparatus, or,
 in other words, does it have any counterpart in the real world?

 First of all, let us agree to assign a practical meaning to the theoreti-
 cal notion "A probability near to 1." By this statement-when applied
 to real phenomena-we mean "practical certainty," that is, when we
 say-in the theory-that the probability of an event is near to 1, this
 means, in practical application, that we are "almost sure" that the
 event will actually occur.

 Now let us apply this to the dice-example above. If the probability
 of a "six" be P6 (not necessarily 1/6), then the probability calculus
 says that, when n is sufficiently large, the probability of a proportion
 k/n of "sixes" in n independent castings being near to Pe is almost 1.
 Translated into practical language, this means: If we cast a die ni times,
 where ni is a large number, say ni = 10,000, and obtain a proportion
 k1/n, of "sixes," then we are practically sure that in a new large number,
 n2, of castings with this die, say n2 = 10,000, the proportion k2/n2 of
 "sixes" will be near to k1/n1. Thus, for example, if we obtained
 k1/ni=1/5 for the first 10,000 castings, and, say, k2/n2= 2/5 for the
 second 10,000 castings, we should be inclined to start investigations
 of the die and the casting procedure, because we should be almost sure,
 on the basis of a great many similar experiments in the past, that
 "something was wrong."

 Purely empirical investigations have taught us that certain things in
 the real world happen only very rarely, they are "miracles," while
 others are "usual events." The probability calculus has developed out
 out of a desire to have a formal logical apparatus for dealing with such
 phenomena of real life. The question is not whether probabilities exist
 or not, but whether-if we proceed as if they existed-we are able to
 make statements about real phenomena that are "correct for practical
 purposes."

 The above example may serve to illustrate the meaning of probabil-
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 ity, and of probability calculus. We shall now give a more general defi-
 nition of probability.

 Let A be a set (finite or infinite) of specified objects of any kind
 (e.g., a set of points in a certain region of space). Let Ax =A . Ax be
 a subset of A, consisting of all those elements of A which possess a
 certain property X among a system of properties X, such that the family
 of all the corresponding sets A . Ax form a Borel corpus { A . Ax }, and
 such that A c {A . Ax }. Assume, furthermore, that we have defined a
 measure, m(A Ax) > 0, within { A * Ax }, such that m(A) > 0, and
 m(A * Ax) = 0 when A * Ax is empty. The set A is then said to be proba-
 bilized (Neyman). A is called a fundamental probability set. For any
 element A * Ax of { A Ax } we define

 P(XI A =m(A -Ax) (9.1) P(XjA)= m(A)

 as the probability of an element of A possessing the property X. From
 the definition of a Borel corpus, and the definition of the measure
 m(A -Ax) it follows that

 0<P(XIA)<1, and P(XIA)+P(XIA)=1,
 where X is the property "not X."

 Any real variable, x, defined as a single-valued measurable function
 of the elements in a probabilized set A, is called a random variable. As
 a particular case x = x? = constant may have the probability 1, while all
 other values of x have the probability 0. Then x is a constant in the
 stochastical sense. The values of x may be considered as properties of
 the elements of A.

 A function, x, of the elements in the set A is measurable if the sub-
 set of A given by x<c is measurable, in the probability measure de-
 fined, for every finite value of c. Therefore, whatever be the real num-
 bers Cl <C2, the definitions of A and x determine uniquely the probability

 (9.2) P(Cl . x < c21 A).
 And it is always possible to find cl and C2 such that

 (9.3) 0 < P(C1 < X < C21 A) < 1.
 For any fixed c1, P(cl?x <C21 A) is a monotonically nondecreasing func-
 tion of c2, called the integral probability law of x.

 The above definition of probability and random variables is prac-
 tically equivalent to the following more direct definition: Let x be a
 real variable; its values can be represented by points on a straight line
 from - X0 to + oo. Let { w } be a Borel corpus of measurable sets, w, on
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 this line, such that, in particular, { w } contains the system of all inter-
 vals C1 _ X < C2, where c1 < c2 may be any pair of real numbers. Let P (w)
 be a set-function defined over { w }, such that P(w) is (1) nonnegative,
 (2) absolutely additive, and (3) equal to 1 if w contains all points x
 from - oo to + X . Then this defines x as a random variable such that
 the probability of (x e w) is given by P(w).

 If there exists a nonnegative, Lebesgue-measurable function, p(x),

 such that, for every interval (c1, c2) for which P (c1 ? X < c21 A) is defined,
 we have

 (9.4) P(cl < x < c2 I A) = fC2p(x)dx,

 where the integral is that of Lebesgue, then p(x) is called the elementary
 probability law (or the probability density function) of x.

 In statistics we usually have to consider systems of several random
 variables. There are two principal types of such systems, and-al-
 though they are not really different from the point of view of statistical
 methodology-the distinction between them helps when we want to
 compare a hypothetical model with actual observations.

 The first type refers to a system of several random variables

 X1, X2, , xr, associated with each element of a fundamental proba-
 bility set. (For example, the fundamental probability set may be all
 persons who lived in the United States during the whole year 1940;
 xi may be personal income, x2 may be private fortune, etc.) For each
 element of the fundamental probability set, the system of values
 X1, X2, - * -* Xr, may be represented by a point, Er, say, in r-dimensional
 space Rr. If w be any measurable set of points in Rr, we denote by

 (9.5) P(Er c w I A), or, for short, P(w)
 the probability that an arbitrary point Er belongs to w. [In the follow-
 ing we shall use the shorter notation P(w) in all cases where there is
 no danger of confusion as to what variable-space is considered.] P(w),
 considered as a function of the set w, is called the simultaneous integral

 probability law of xi, x2, * X, Xr, within the fundamental probability
 set A.

 It will be noticed that we use the same symbol P to indicate two
 different things, namely (1) a number, and (2) a function. If the argu-
 ment, w, is a fixed set of points, wo say, then P(wo) means a number,
 namely the probability of wo. If w is considered as an arbitrary, vari-
 able argument, then P(w) means the probability function. We shall
 use particular letters or subscripts, etc., to indicate fixed sets in the
 variable-spaces in question, so no confusion can arise.
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 If there exists a nonnegative, Lebesgue-measurable function
 p(xI, x2, * *, xr), such that, for every w for which P(w) is defined,
 we have

 (9.6) P(w) = J ... p(xl, x22 ... * xr)dx,dx2 ... dXr,
 (W)

 then p(xl, x2, , xr) is called the joint elementary probability law of
 XI) X2, , * Xr.

 Let pi(x1), p2(X2), , Pr(Xr) be the elementary probability laws of
 the r variables x taken separately (i.e., the marginal distributions of
 the x's), within A. If then

 (9.7) p(xi, X2, * *, Xr) = pl(xl) P2(X2) * Pr(Xr),

 the variables xi, X2, * * *, ,Xr are said to be stochastically independent.
 The second type of systems of random variables refers to random

 sampling. Suppose that we have a fundamental probability set, A, each
 element of which is characterized by the values of r random variables,
 xl, X2, . . ., x. And suppose that we fix a certain rule by which to pick
 out a system of s elements from A. Let (x11, X2l, . , Xri) denote the
 system of values of the first element picked, (xv2, X22, * * , xr2) that for
 the second element, and so forth. Let Bi denote the subset of A corre-
 sponding to all a priori possible value-systems (xli, X2i, , xri) for the
 element to be picked as No. i (i= 1, 2, *, s). Bi may be considered as
 the fundamental probability set of the random variables xii, X2i, . , .ri
 The system

 (Xll, X21, * * Xrl) X

 (9.8) (X12, X22, , Xr2),

 (Xls, X282 * Xrg)X

 is called a sample of size s from the r-variate fundamental probability
 set (or "population") A, or, what amounts to the same thing, s samples
 of one observation each, namely one system of values (Xl, X2, * * *, Xr)
 for each fundamental probability set Bi. The joint distribution of
 (Xli, X2i, *, xri) may clearly change with i. The system (9.8) may
 also be considered as one sample of just one observation, namely one
 element picked from an rs-variate population, say B. Each element
 in B would then be characterized by a set of values of the rs random
 variables (9.8), and the probability distribution associated with B
 would be of rs dimensions. Each system of values (9.8) may be repre-
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 sented by a point, E, in rs-dimensional Euclidean space. Such a point,
 E, is called a sample point, or a point in the rs-dimensional sample space.

 By random sampling we usually understand an experimental arrange-
 ment such that the various sets Ei = (x1i, X2V, ..., xri) (i = 1, 2, s),
 in (9.8) are mutually independent, i.e., such that, if the elementary
 probability laws exist,

 (9.9) p(E) = p1(E1) -p2(E2) ... ps(Es).

 The dependence or independence within each system Ei = (xiX, x2;,
 Xrs) is usually "given by Nature."

 When the (integral or elementary) probability law of a system of
 random variables is known, there are standard mathematical rules for
 deriving the probability laws of functions of these variables. (See, e.g.,
 J. V. Uspensky, Mathematical Probability, New York, 1937.)

 10. The Practical Meaning of Probability Statements

 At the beginning of the preceding section we gave a simple illustra-
 tion of the practical meaning of probability statements. We can now
 give a more general interpretation of such statements.

 Suppose we should know that n observable variables xi, x2, * X,n
 have the joint elementary probability law p(x1, x2, * * *, x" ). What
 are the practical statements we could make about a set of values
 (xl, x2, ... , x n) not yet observed? It has been found fruitful in various
 fields of research to use the observable "frequency of occurrence" of
 an event as a practical counterpart to the purely theoretical notion of
 probability. That is, if the elementary probability law p implies that
 the probability of a certain region or set, w say, in the n-dimensional
 x-space is P(w), we take this to mean that by repeated actual observa-
 tions of points (xl, X2, * , xn) in the x-space the relative frequency
 of points falling into w would, for a very large number of points of
 observation, be close to P(w).

 However, as a rule we are not particularly interested in making state-
 ments about such a large number of observations. Usually, we are inter-
 ested in statements that could be made about a relatively small number
 of observation points; or, perhaps even more frequently, we are inter-
 ested in a practical a priori statement about just one single new ob-
 servation. Then it is of relatively little practical value to know that
 P(w) is, let us say, 0.4, 0.5, or 0.6. For then we cannot have much con-
 fidence, either in the statement that the next observation point will
 fall into w or in the statement that it will fall outside w. In order to
 be able to make a useful statement, the situation must be such that
 there exists an "interesting" subset w for which the probability P(w)
 is near to 1; or, in practical interpretation, such that "nearly every"
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 observation will fall into w. Then we could say that it would be a

 "miracle" if, in particular, the next observation should fall outside w.
 That is, we should be almost sure that this would not happen. Experi-

 ence has shown that the purely hypothetical notion of probability dis-
 tributions is a useful tool for deriving such practical statements.

 Above we considered "frequency of occurrence" as a practical coun-
 terpart to probability. But in many cases such an interpretation would

 seem rather artificial, e.g., for economic time series where a repetition
 of the "experiment," in the usual sense, is not possible or feasible.
 Here we might then, alternatively, interpret "probability" simply as

 a measure of our a priori confidence in the occurrence of a certain event.
 Also then the theoretical notion of a probability distribution serves us

 chiefly as a tool for deriving statements that have a very high proba-
 bility of being true, the practical counterpart of which is that "we are
 almost sure that the event will actually occur."

 Much futile discussion has taken place in regard to the questions of
 what probabilities actually are, the type of events for which probabili-
 ties "exist and so forth. Various types of "foundations of probability"
 have been offered, some of them starting from observable frequencies
 of events, some appealing to the idea of a priori belief or to some other

 notion of reality. Still other "foundations" are of a purely formal na-
 ture without any reference to real phenomena. But they all have one

 thing in common, namely, that they end up with a certain concept of
 probability that is of a purely abstract nature. For in all the "founda-
 tions" offered the system of probabilities involved are, finally, required
 to satisfy some logical consistency requirements, and to have these ful-
 filled a price must be paid, which invariably consists in giving up the

 exact equivalence between the theoretical probabilities and whatever
 real phenomena we might consider. In this respect, probability schemes

 are not different from other theoretical schemes. The rigorous notions

 of probabilities and probability distributions "exxist" only in our ra-
 tional mind, serving us only as a tool for deriving practical statements
 of the type described above.

 When we state that a certain number of observable variables have
 a certain joint probability law we may consider this as a construction
 of a rational mechanism, capable of producing (or reproducing) the ob-

 servable values of the variables considered. When we have observed a
 set of values of n observable variables (xl, X2, *. *, x") we may, without
 any possibility of a contradiction, say that these n values represent a
 sample point drawn from a universe obeying some unknown n-dimen-
 sional (integral) probability law. Whatever be the a priori statement
 we want to make about the values of n observable variables, we can
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 derive this statement from one of several (perhaps infinitely many)
 suitably chosen n-dimensional probability laws. The class of all n-di-
 mensional probability laws can, therefore, be considered as a rational
 classification of all a priori conceivable mechanisms that could rule the
 behavior of the n observable variables considered.

 Since the assignment of a certain probability law to a system of ob-
 servable variables is a trick of our own, invented for analytical pur-
 poses, and since the same observable results may be produced under a
 great variety of different probability schemes, the question arises as to
 which probability law should be chosen, in any given case, to represent
 the "true" mechanism under which the data considered are being pro-
 duced. To make this a rational problem of statistical inference we have
 to start out by an axiom, postulating that every set of observable vari-
 ables has associated with it one particular "true," but unknown, proba-
 bility law. Since the knowledge of this true probability law would
 permit us to answer any question that could possibly be answered in
 advance with respect to the values of the observable variables involved,
 the whole problem of quantitative inference may then in each case be
 considered as a problem of gathering information about some unknown
 probability law.

 11. Random Variables and Probability Distributions in
 Relation to Economic Data

 Through experience we have learned much about the type of real
 phenomena to which the schemes of probability theory are most suc-
 cessfully applied. (Later, we shall show that the field of application
 for probability schemes is much more general than is indicated in this
 section.) These phenomena we group under the name "random experi-
 ments." We cannot give a precise answer as to what is a random ex-
 periment, because it is not an abstract concept, but only a name applied
 to certain real phenomena. But we may indicate some of the essential
 properties that we ascribe to such experiments. First, the notion of
 random experiments implies, usually, some hypothetical or actual pos-
 sibility of "repeating the experiment" under approximately the "same
 conditions." Second, it is implied that such repetitions may give vary-
 ing results. And third, the inferences we draw from random experiments
 are essentially of the type: How often does a certain result occur?

 Does this description apply to economic data?
 Here, I think, it is useful-though not always actually possible-to

 make a distinction between two different classes of experiments,
 namely, on the one hand, those we plan and perform ourselves, as
 research workers, to investigate certain facts already present; on the
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 other hand, the experiments which, so to speak, are products of Nature,
 and by which the facts come into existence. To bring out this distinction
 more clearly, let us consider an example.

 Suppose we try to "explain" the size and the variations of consump-
 tion of a given commodity, A, in a society or group consisting of N
 individuals or families. What we usually mean by "explanation" in such
 a case is that we want to pick out certain other measurable factors, the
 variations of which-by hypothesis or by experience-might be ex-
 pected to "influence" the behavior of each individual, or family, etc.,
 in the same way. Suppose we have specified a certain number of such
 factors, in the present case, for instance, price of the commodity A,
 prices of other commodities, individual (or family) income, the age of
 the individuals, etc. Let there be, all together, n such specified factors,
 xl, X2, ... , x,,; and let the actual consumption of the commodity A
 for a given individual (or family) be denoted by y. We neglect for the
 moment the errors of observation due to lack of precision in the defini-
 tions of what y and the variables x represent, as well as imprecision
 due to errors of measurement proper. In other words, we deal here with
 "true" variables as described in Section 3.

 Let us assume, tentatively, that, for each individual, we could "ex-
 plain" his consumption of A by an equation, say

 (11.1) y* = f(Xl, X2, . * Xn),

 where y*, for each individual, is obtained by inserting in the right-hand
 side of (11.1) those values of the influencing factors x that are rele-
 vant to him. However, if we do this for each individual, we shall find-
 no matter what be the fixed functionf-that our "explanation" is incom-
 plete. More specifically, we shall find that two individuals, or the same
 individual in two different time periods, may be confronted with ex-
 actly the same set of specified influencing factors x [and, hence, they
 have the same y*, by (11.1)], and still the two individuals may have
 different quantities y, neither of which may be equal to y*. We may try
 to remove such discrepancies by introducing more "explaining factors,"
 x. But, usually, we shall soon exhaust the number of factors which
 could be considered as common to all individuals, and which, at the
 same time, were not merely of negligible influence upon y. The dis-
 crepancies y - y* for each individual may depend upon a great variety
 of factors, these factors may be different from one individual to an-
 other, and they may vary with time for each individual.

 In a purely formal way we may replace y* by y in (11.1) and, instead,
 add a general shift, s, to take care of the discrepancies between y

 and y*, i.e.,
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 (11.2) Y = f(x1, X2, , * * -Xn) + S.

 Suppose, e.g., we should know or assume that, for each set of values of
 the variables x, s (and, therefore, y) is a random variable having a cer-
 tain probability distribution with zero mean (say). What is the mean-
 ing of such a scheme?

 Let us pick out a subgroup of individuals from the total group of N,
 such that, for each member of this subgroup, the factors x are identi-
 cally the same. When, nevertheless, the quantities y for the members
 of this subgroup are different, it means that the decisions of the in-

 dividuals, even after fixing the values of xi, X2, * - *, x, are still to
 some extent uncertain. The individuals do not all act alike. When we
 assume that s has, for each fixed set of values of the variables x, a
 certain probability distribution, we accept the parameters (or some
 more general properties) of these distributions as certain additional
 characteristics of the theoretical model itself. These parameters (or
 properties) describe the structure of the model just as much as do the

 systematic influences of xl, X2, * *, x,, upon y. Such random elements
 are not merely some superficial additions "for statistical purposes."

 When we describe s as a random variable with a certain probability
 distribution for each fixed set of values of the variables x, we are
 thinking of a class of hypothetical, infinite populations, each of which
 is completely described by the scheme (11.1) and by the characteristics
 of the distributions of s. The total number of individuals, N, actually
 present may then be considered as a mixed sample consisting of sub-
 samples drawn from members of the hypothetical class of populations.
 There is no logical difficulty involved in considering the "whole popu-
 lation as a sample," for the class of populations we are dealing with
 does not consist of an infinity of different individuals, it consists of an
 infinity of possible decisions which might be taken with respect to the
 value of y. And all the decisions taken by all the individuals who were
 present during one year, say, may be considered as one sample, all the
 decisions taken by, perhaps, the same individuals during another year
 may be considered as another sample, and so forth. From this point of
 view we may consider the total number of possible observations (the
 total number of decisions to consume A by all individuals) as result
 of a sampling procedure, which Nature is carrying out, and which we
 merely watch as passive observers.

 It is on purpose that we have used as an illustration an example of
 individual economic behavior, rather than an average market relation.
 For it seems rational to introduce the assumptions about the stochasti-
 cal elements of our economic theories already in the "laws" of behavior
 for the single individuals, firms, etc., as a characteristic of their be-
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 havior, and then derive the average market relations or relations for

 the whole society, from these individual "laws." It will then, for ex-
 ample, in many cases be possible to show that, even under very weak

 assumptions about the distributions of the stochastical elements in
 these individual relations, the derived average or total relations for the
 whole market or the whole society will be characterized by certain com-

 pound stochastical variables (e.g., sums of individual error terms)
 which, by the laws of large numbers, will be approximately normally
 distributed.

 As active research workers we may produce another type of random
 experiments. For instance, in the example above we might pick out,
 by some random process, a subgroup of all individuals actually present,
 and measure their y's and x's. From this subgroup we might draw infer-
 ence as to the behavior of the whole group. But the connection between

 such a subgroup and the total group that we might have observed
 is different from that between this total group of individuals (or de-

 cisions) present and the hypothetical class of infinite populations from
 which the total group present is supposed to be drawn; for the first

 connection is, essentially, dependent upon our own choice of the ran-
 dom sampling procedure to be used. By choosing another random proc-

 ess we get another connection. And we might here gradually remove
 all possible sampling errors by increasing the size of the sample, so

 that, finally, we should obtain a true picture of the sample of all in-
 dividuals present. But the uncertainty in the correspondence between
 this sample of all individuals and the hypothetical class of infinite

 populations still remains. One problem is to construct hypothetical
 probability models from which it is possible, by random drawings, to
 reproduce samples of the type given by "Nature." Another problem is
 to make exact measurements of these samples. The first task is essen-
 tially one of economic theory. The second is one of statistical observa-

 tion technique and "classical" sampling theory. Of course, after the
 stochastic schemes have been chosen, there is no essential difference
 between the problems of statistical inference they present.

 12. The Method of Splitting the Observable Variables into

 "Systematic Parts" and "Disturbances"

 Observable economic variables do not satisfy exact relationships (ex-
 cept, perhaps, some trivial identities). Therefore, if we start out with
 such a theoretical scheme, we have-for the purpose of application-to
 add some stochastical elements, to bridge the gap between the theory
 and the facts. One much-discussed way of doing this is to adopt the
 convention that the observable variables considered are each made up
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 of two parts, viz., a systematic part which, by assumption, satisfies the

 exact relation considered, and an error part, or "disturbance," of a
 stochastical nature.3

 Let xi', X2', , x.' be n theoretical variables satisfying, by as-
 sumption, a certain exact functional relationship. And let xi, x2, * * *, x",
 be the corresponding observable variables to be considered. We then

 write xi =xi+x ", i = 1, 2, * * , n, where the variables x" are certain
 stochastical variables. In order that our relation between the variables
 x' should also tell something about the observable variables x we have
 to make certain additional assumptions about the distribution of the
 variables x". Then our exact relation between the variables x' becomes
 in fact a stochastical relation in the variables x and x", by substituting

 xi-xi" for xi'.
 It is important to notice, however, that such a splitting of the varia-

 bles is necessarily of a relative nature, depending on the particular sys-
 tem of theoretical equations with which we are concerned.

 This can be brought out rather well by means of a theoretical illus-
 tration.

 Consider for this purpose three ordinary dice, one black, one red, and
 one white, and let us perform the following series of experiments: First,
 we cast all three dice. We obtain as result three numbers, say Xb for

 the black die, x. for the red, and x. for the white. Let the sum of these
 three numbers be X=Xb+xr+xw. Next, we let the black die remain in
 its position from the first casting (of all three dice), but we cast again
 both the red and the white one. Let the result of this experiment be yb

 (=Xb), yr, and yw, and let Y=yb+yr+yw. Now, finally, we let both the
 black and the red dice remain untouched, but we cast the white one

 again. Let the result of this experiment be Zb (=Yb=Xb), Zr (=Yr),
 and zw, and let Z=Zb+Zr+z+w. Assume that we repeat this whole ex-
 periment N times. We obtain three series

 Xi, Yi, Z1 (lst experiment),

 (12.1) X2, Y2, Z2 (2nd experiment),

 XN, YN, ZN (Nth experiment).

 From the set-up of these experiments it is evident that the three se-
 ries X, Y, Z, are correlated, because they have some common compo-

 a This scheme is, e.g., the basis for Frisch's method of "Confluence Analysis."
 See Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regres-
 sion Systems, Oslo, 1934. See also T. Koopmans, Linear Regression Analysis of
 Economic Time Series, Haarlem, De Erven F. Bohn N. V., 1937.
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 nents. Indeed, for any triple, say Xi, Yi, Z; (the result of the ith experi-
 ment), we have

 Xi = Xbi + Xri + Xwi

 (12.2) Yi = Xbi + Yri + Ywiy (i = 1, 2, * * N).

 Zi = Xbi + Yri + Zwiy

 Suppose now that we want to study the interdependences between
 the three variables X, Y, Z, separating as "disturbances" those factors
 which are not "common causes." From (12.2) we derive

 y- (Yri + Ywi) = Xi - (xri + Xwi),

 (12.3) Zi - (yri + Zwi) = Xi- (xr + Xi), (i = 1, 2, , N),

 Z;- (Z.i) = Yi- (Ywi),

 where the expressions in brackets indicate "disturbances." The com-
 position of the disturbances clearly depends upon which relation we are
 investigating. And to neglect this would make inefficient theory.

 This schematic set-up has, I think, some relevance to many impor-

 tant problems in economics. E.g., let X, Y, and Z represent results of
 decisions taken in some economic planning. Then the scheme above
 may be looked upon in the following way: First X is determined by
 some considerations, which we do not investigate in this connection.
 Once this decision is taken, the decision Y is no longer quite free, it is
 "influenced" by X. But there are also other factors determining Y that

 have nothing to do with X, namely yr and yw. These factors, however,
 which act as disturbances in Y with respect to the "cause" X, are them-

 selves partly systematic "causes" with respect to the decision Z after
 Y is chosen.

 Let us consider an example from economic dynamics: The interrela-
 tion between investment and profit. Let v(t) denote observed invest-
 ment activity (per year) at point of time t, and let z(t) be observed
 profit. Assume there are no errors made in registering these quantities.
 We make the following hypotheses: Investment activity at t depends
 upon profit realized at some previous time, say at (t-0), while profit
 at t depends upon current investment at t. Letting el(t) and e2(t) denote
 certain general random shifts, we may express these hypotheses by

 (12.4) v(t) = f[z(t - 0) ] + el(t),

 (12.5) z(t) = g[v(t) ] + E2(t),

 where 0 is positive, and where f and g are certain functions. Now it may

 be that, in (12.4), we have to allow for a considerable disturbance,

 el(t), in v(t) as compared with that part of v(t), [namely v(t)-el(t)],
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 which is "explained" by z(t- 0). But this does not mean that only this
 part of v(t) influences z(t) through (12.5) [i.e., that we could replace
 v(t) by v(t) - e1(t) in (12.5) ]. Most certainly the actual investment [i.e.,
 v(t) ] has a more direct bearing upon the profit z(t) than our hypotheti-
 cally constructed "systematic part" of it [namely v(t) - e1(t) ].

 The occurrence of such situations has very important consequences
 for the problem of linking together conclusions drawn from different
 relationships, as we shall see in the next section.

 13. Stochastic Equations versus Exact Equations

 The statement: "A set of variables satisfies a certain equation," has
 a different meaning according as it is applied to an abstract mathe-
 matical scheme or to variables observed in real life.

 In an abstract mathematical scheme the statement means the fol-
 lowing: Let x1', X2', * , x,', be n real variables. Each set of values
 of these n variables may be represented by a point in n-dimensional
 Cartesian space. Let us denote by S the set of all points in this space,
 and let "A" be a rule by which to pick out a certain subset of points,

 SA, of S. Let us exclude all points of S which do not belong to SA. Then,
 if a function f exists that is not identically zero but is such that

 (13.1) f(xl', X2', X , *X,X) = 0

 for all points belonging to SA, we say that the variables xi', x2', Xn
 (the variations of which are limited by the rule "A") have the property
 of satisfying the equation f= 0. Here the whole set SA is given by defini-
 tion through a logical operation A, and we may check whether the
 statement in (13.1) is right or wrong.

 Similar statements about variables observed in real life are of a much
 more hypothetical character. When we make statements of the type
 (13.1) about a set of observable variables, say x1, x2, * , x", we as-
 sume, so to speak, that Nature has a rule for picking out such observa-
 tion points (x1, x2, * , x n) in the x-space in such a way that none
 of these points contradict the hypothesis (13.1) when the variables x'
 are replaced by the variables x. We then say that (13.1) is a law of
 Nature. We try to establish such laws by testing the truth of (13.1)
 with respect to past observations. But even if they all satisfy (13.1),
 we cannot know that the next observation will do so. We usually, how-
 ever, think that it will, because we have an enormous record of empiri-
 cal cases showing that such empirical inductions have actually been
 very fruitful. At the same time, we have also learned that, in empirical
 research, it is useful to replace the expression "a set of variables satis-
 fies a certain equation" by the expression "satisfies approximately"
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 such an equation. This means that, if we insert observation points
 (x1, X2, * *, x") in the left-hand side of (13.1), we obtain, on the right-
 hand side, a certain variable, s.

 Then-as we have already discussed above-if such an expression
 as "satisfies approximately" shall have a nontrivial meaning, we must
 change the hypothesis (13.1) in such a way that it expresses what kind
 of approximation we assume. One way of doing this is to change the
 hypothesis (13.1) to

 (13.2) f(xl, X2, ..., x n) = s,

 and ascribe to s certain general properties which should not be contra-
 dicted by data. We are particularly interested in such schemes as
 ascribe to s certain general properties of a random variable, first, be-
 cause we have a large record of empirical cases showing that such
 schemes have been successfully applied to observed phenomena, and,
 secondly, because the theory of such schemes has been more developed
 than any other approximation schemes. And we find justification for
 applying them to economic phenomena also in the fact that we usually
 deal only with-and are interested only in-total or average effects of
 many individual decisions, which are partly guided by common fac-
 tors, partly by individual specific factors (see Section 11).

 In case s is assumed to be a random variable, we say that the varia-
 bles x satisfy a stochastic equation (13.2). This is, of course, only a very
 particular type of stochastic equations. Here we have not "blamed"
 any particular element in our scheme for the fact that the observed
 variables x1, x2, . ., x, X do not satisfy (13.1) exactly. We may operate
 with other schemes specifying more in detail where the stochastic ele-
 ments come in. In general, we may lay down the following definition: If

 x1, X2, ..., x,n be a set of observational variables, and if El, E2, * * *Xm
 be m random variables, and if a function, F, not identically zero, ex-
 ists, such that for all observations

 (13.3) F(xi, x2, * , x-n; E1, E2, * Em) = 0,

 then x1, x2, , Xn, are said to satisfy a stochastic equation. Thus, a
 stochastic equation in n variables may be an exact equation in n+m
 variables.

 Suppose that our observation material consists of N>>n points in
 the n-dimensional space of the variables x, and suppose that we ascribe
 to the joint probability distribution of qi, E2, , * * Emc certain proper-
 ties a priori. Now we insert, successively, the N observation points for
 the variables x in (13.3), and for each observation point we choose a
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 set of values of the e's such that (13.3) is fulfilled. Thus, we get a sample
 of N points in the m-dimensional Cartesian space of the e's. On the
 other hand, by ascribing a priori certain properties to the probability
 distribution of the e's, and by excluding the possibility of obtaining
 certain samples of the e's which then are "improbable" (in some sense
 or other, a question to be discussed later), we have set a probability
 limit to the subset of admissible samples of the e's. Let this set of ad-
 missible sample points for the e's be Q. Then we may say that, if the N
 observation points in the x-space are such that-under the condition
 (13.3)--it is possible to choose a sample of N sets of e's which belong
 to the set Q, then we cannot reject the hypothesis that the n variables
 Xl, X2, * , x., satisfy the stochastic equation (13.3).

 From a stochastic scheme of the form (13.3) we may derive certain
 exact equations, not containing the random variables e, by giving one or
 more of the variables x a new interpretation. There are two important
 different types of such derived exact equations. The first type could
 be called "if-there-were-no-errors equations," the second, "expected-
 value equations."

 The first type is obtained by assigning to the random variables e in
 (13.3) certain constant values. In most cases we should formulate the
 stochastic equation in such a way, if possible, that these constant val-
 ues of the &'s would be zero. Then, of course, if we require that

 (13.4) F(xi, x2, * , Xn; 0, 0, - * *, 0) = 0

 we impose a condition upon the variables x which, in most cases, will
 be violated by actual observations. Therefore, if (13.4) is imposed, one
 or more of the variables x must stand for-not what they actually are-
 but what they would be "if there were no errors." This kind of simpli-
 fied exact equations, therefore, represents a hypothetical correction of
 the individual observation points in the x-space.

 The second type of "exact" equations, on the other hand, represents
 average relations in a group of observations. Here we do not simplify
 the original scheme, but we confine ourselves to studying certain
 stochastic limit properties of the scheme. We may illustrate the differ-
 ence by a simple example.

 Consider a group of families of equal size and composition. Let r be
 family income, and let x be family spending, during a certain period of
 time. Assume all prices constant and the same for all families during
 this period. Still, among those families who have the same income, the
 amount spent, x, will vary from one family to the other, because of a
 great many neglected factors. Let us assume that the spending habits
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 of an infinite population of such families could be described by the
 following stochastic equation

 (13.5) log6 x = k log, r + ko + e (k and ko = constants),

 where e is a random variable, normally distributed with zero mean and
 variance = a2. From this stochastic scheme we may derive the following
 two "exact" equations:

 First, let us imagine that we could, somehow, remove the forces
 which cause the discrepancies e. In this hypothetical population all
 families with the same r would act alike, and we should have

 (13.6) log, x = k loge r + ko.

 Secondly, let the "errors" e remain in the scheme, but consider only
 the average or expected consumption for those families who have the

 same income r. This gives

 (13.7) E(x I r) = x(r) = eko- r' J et e-i2/2a2de = eko?+&2 . rk

 where E(x| r) means: Expected value of x, given r.
 Therefore, what the average family in the scheme (13.5) does is not

 necessarily the same as what the families would all do if they acted
 alike.

 It is particularly important to be aware of the difference between
 these two types of relations when we want to perform algebraic opera-
 tions within stochastic equation systems. For instance, from the theo-

 retical scheme (13.6) we may derive

 (13.8) x = ekork.

 But from E(log6 xl r) =k log. r+ko we do not get E(xj r) =ekork.
 Therefore, when we perform such operations, we must keep in mind

 that we are using the hypothetical "if-there-were-no-errors" scheme,

 and not the "expected-value" scheme. Confusion on this point arises
 usually from the habit of dropping the operation symbol E (or the bar
 over x, etc.) in such equations as (13.7). Confusion arises in particular
 when we have a system of stochastic equations and apply algebraic

 elimination processes to the corresponding "expected-value" equations.
 The usual mistake here is that we identify the expected values of a

 variable in one equation with the expected values of the same variable
 in another equation. This may lead to nonsensical results. The following
 is an illustration:
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 Let x1, X2, X3 be three observable variables, defined by XI = e1+ E2,
 X2 = k1e1, and X3 = k2e2, where ec and E2 are two independent random vari-
 ables with zero means. Then we have

 1 1
 (13.9) xi' = E(x1 I x2) = - x2, x1" = E(x1 I X3) = -X3.

 ki k2

 Now, if we identify (by mistake) the two variables xi' and x1", denoting
 them both by xi say, we get X2 = (k1/k2)x3, which has no meaning.
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 CHAPTER IV

 THE TESTING OF HYPOTHESES

 Statisticians have, often with much right, argued that the econ-
 omists do not present their theories in such a form that these theories
 represent well-specified statistical hypotheses, and that, therefore, the
 statisticians simply do not "understand the language" of the econo-
 mists. The economists, however, are not the only ones to be blamed.
 Indeed, the whole statistical theory was, until rather recently, in a
 state of much confusion. But this situation is now disappearing rapidly,
 through a very fruitful change of direction brought about by the funda-
 mental work of J. Neyman and E. S. Pearson.' By introducing a few
 very general-and, in themselves, very simple-principles of testing
 statistical hypotheses and estimation, they opened up the way for a
 whole stream of high-quality work, which gradually is lifting statistical
 theory to a real scientific level. The working out of technical details
 on the basis of the general principles introduced by Neyman and Pear-
 son is still only in its beginning. And very difficult technical problems
 are likely to arise. But the fundamental importance of the Neyman-
 Pearson principles lies in the fact that these principles specify clearly
 the class of problems that fall within the field of statistical theory and
 statistical inference. Thus, it has now become possible for the econo-
 mist to see exactly how he has to formulate his theories if he wants the
 assistance of a statistician. It is of the greatest importance that the
 economist himself should know these principles of formulation, for then,
 even if he is not himself a statistical expert, he can at least ask intelli-
 gent statistical questions.

 In the following we shall give a brief outline of the basic principles
 in the Neyman-Pearson theory of testing statistical hypotheses and
 estimation, and, thereafter, we shall use these principles for a statistical
 formulation of hypotheses constructed in economic theory. This will, it is
 hoped, clear up a few controversial issues in connection with the prob-
 lem of statistical "verification" of economic relations.

 14. An Outline of the Neyman-Pearson Theory of Testing
 Statistical Hypotheses and Estimation

 Let xl, X2, * *, x, denote n random variables defined within a
 fundamental probability set A. And let P(En ? Wn4 A), or, for short,
 P(w), be their joint integral probability law.

 1 See, in particular, Statistical Research Memoirs, Vol. I, 1936, Vol. II, 1938,
 London. Other references are given in the following text.

 -60-
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 Any tentative statement, H, concerning the integral probability law
 P(w) of the variables xi, X2, * *, xn [or concerning their elementary
 probability law, p(x1, X2, , xn,) if this is assumed to exist], is called
 a statistical hypothesis. More precisely, let Qn, or for short, Q, denote
 the set, or class, of all possible n-dimensional integral probability laws,
 and let co be any specified subset of Q (w may, e.g., be the set of all
 n-variate normal distributions, or the set of all n-variate continuous
 distributions, or any other subset of U). A statement of the form

 (14.1) P(w) w

 (read: The integral probability law of x,, X2, , x,, belongs to the
 class w) is called a statistical hypothesis.

 The statement (14.1) might be wrong, and then the alternative is that

 (14.2) P(w) e (Q - co).

 Above, the only thing assumed to be known for certain was that
 P(w) e Q2, which is trivial. Usually, however, we know-or at least we
 assume that we know-more than this. Let Q? denote a subset of U.
 And let co0 be any subset of Q?. If, on the one hand, we know or assume
 that the statement

 (14.3) P(w) E Q?

 is true, while, on the other hand, we admit that for any subset wO ' Q?,
 the statement

 (14.4) P(w) e wO

 may be wrong, then Q? is called the set of a priori admissible hypotheses
 with respect to the probability law P(w). (For example, Q? might be
 the set of all n-dimensional probability laws for which the elementary
 probability law exists, and w? might, e.g., be the set of all probability
 laws the elementary probability laws of which are symmetric about the
 mean.) In problems of testing a statistical hypothesis the specification
 of the set of a priori admissible hypotheses is, as we shall see, of funda-
 mental importance.

 A statistical hypothesis is called simple if it specifies completely the
 probability law P(w). E.g., the statement

 (14.5) P(w) = JJ . 3 e-(1I2o')z(xi.;)'dxidx2 ... dx,,

 where xi (i =1, 2, * - , n) and cr are numerically specified constant
 parameters, is a simple hypothesis. Any hypothesis that is not simple
 is called composite. For example, if the value of the parameter o- or
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 some of the means ti or all together are not uniquely specified, then
 (14.5) is a composite hypothesis.

 A set of admissible hypotheses, Q?, is called parametric, if all the
 probability laws P(w) belonging to Q? are given by analytic expressions
 which differ from each other only with respect to the numerical values
 of a finite number of parameters. For example, all probability laws

 (14.5) such that ti>0, i=1, 2, ** , n, form a parametric set. A set
 which is not parametric is called nonparametric. If Q? is parametric
 then the set w0 must be parametric. But if Q20 is nonparametric, wc
 [in (14.4) ] may or may not be parametric.

 A test of a statistical hypothesis is a rule of rejection or nonrejec-
 tion of the hypothesis, on the basis of a given sample point. Let

 X1, X2, *, x,, be n random variables, and let Q? be the set of all a
 priori admissible hypotheses about their simultaneous integral proba-

 bility law P(w). For any particular member of the set Q?2, and for any
 particular subset, w, of points in the sample space Rn, we might cal-
 culate the probability that a sample point, E, falls into w. If w be fixed,
 the probability of E falling into w (= w? say) will generally vary ac-
 cording to which member of Q?2 is used to calculate it. What is an
 "improbable" part of the sample space with respect to one probability
 law in Q?2 may be a more probable one for another probability law in Q?.

 And this fact, of course, forms the basis for testing any particular hy-
 pothesis within Q? against the other a priori admissible ones.

 Much controversy is found on this point in earlier literature, in par-
 ticular because it was thought that a reasoning back from a sample

 point to its true population would involve the notion of "inverse proba-

 bility." One often finds expressions such as "the most probable distribu-
 tion" from which a given sample may have been drawn. Such a
 statement, of course, implies a certain probability distribution of the
 hypotheses within Q?2. In most cases, however, such a model does not

 have much sense, because, when we draw a sample, we take it from a

 fixed but unknown member of Q?. The probability of any member of Q?

 being the true one, i.e., the one we sample from, is, therefore, either 0
 or 1, independent of what be the sample point obtained.

 On the other hand, if we establish a rule by which to reject or not
 reject a hypothesis, and if the decision is made to depend uniquely upon

 the location of a sample point, we may speak of the probability of our
 decision being right or wrong, because the decision-being a function of
 the sample point E-is then a random variable.

 Let us now formulate more precisely what is a test of a statistical
 hypothesis. Let Q? be the set of all a priori admissible hypotheses as

 to the probability law P(w) of the n random variables xi, x2, * * Xn,
 and let P(w) ? 0?, where wO is a subset of Q?, be the hypothesis, Hoy
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 to be tested. This means: We know for certain that, whatever be the
 sample point observed, the true probability distribution of the n ran-
 dom variables is one and only one member (fixed, but so far unknown)
 of the set Q?, and our hypothesis is that P(w) belongs to a more re-
 stricted set of distributions, co, within QO. The class w0 may contain
 only one single member (a simple hypothesis) or several members (a
 composite hypothesis). In the last case all members of co0 are treated
 as equivalent, we are not interested in distinguishing between them.

 Now, let W0 be a set of points in the n-dimensional sample space R.,
 such that, whenever a sample point falls into Wo, i.e., E ? Wo, we
 reject the hypothesis Ho, otherwise not. Wo is then called a critical region
 (or more generally a critical set of points) for testing the hypothesis Ho,
 i.e., P(w) ? con, against the alternatives P(w) ? (0 - co0). A critical region
 and a test are evidently just two different names for the same thing.

 In particular cases a test of a hypothesis Ho might be decisive, namely
 in cases where there exists a subset W0 of the sample space which bas
 probability =1 according to Ho, but probability = 0 according to any
 other member of ?20. Then, by means of one single sample point, we

 could decide-with a probability= 1 of being correct-whether Ho were
 true or false, by rejecting Ho if and only if E e (Rn- Wo). Also, suppose
 that the set Q?2 of hypotheses H could be divided into a system of k
 disjunct subsets 010, 020, ... , 0, corresponding, one-to-one, with
 k nonoverlapping subsets W1, W2, **, Wk, of the sample space,
 such that P(WiJHcQ20) be =0 when i5j, but =1 when i=j,
 (i, j= 1, 2, * * , k). Then one single sample point would, at once, re-
 strict the set of a priori admissible hypotheses to one of these subsets
 Q,?. Such cases, although important, are trivial from the point of view
 of statistical theory. We may, therefore, assume the set Q? to be so
 reduced in advance, that any subset, W, of the sample space having
 probability = 1 according to one member of Q?2, has also a positive
 probability with respect to all other members of Q0. The application
 of a test as defined above will then always involve some risk of errone-
 ous decisions.

 Now, if the region of rejection Wo should be the whole sample space
 Rn (or the whole space minus a part of it that has probability zero ac-
 cording to any member of Q0), then we should always (or almost al-
 ways) reject Ho. This is evidently not what we want, because when we
 desire to test Ho, we imply that it might be correct, and in that case
 the test would constantly lead to wrong decisions. On the other hand,

 if P(Rn- Wo|I Ho) and P(Wo IHo)2 be both positive, we usually run a
 two-way risk of making an erroneous decision by the test.

 2 We recall that the general symbol P(XI Y) means: The probability of X
 given Y, or, the probability of X calculated under the assumption that Y is true.
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 First, suppose that the hypothesis is actually true and, at the same
 time, the sample point does fall into Wo (which is-by assumption-
 possible). Then we reject Ho, hence, we make an error. This is called an
 error of the first kind.

 Second, suppose that the hypothesis is actually wrong (i.e., one of the
 alternative hypotheses is the true one), and, at the same time, the
 sample point does not fall into WO. Then we do not reject Ho, hence, we
 make an error. This is called an error of the second kind.

 For any given size of the sample we can make the probability of one
 or the other of these errors as small as we please, by an appropriate
 choice of WO, but it is not possible to do so for both errors at the same
 time. We therefore have to make a compromise, depending upon the
 kind of risk we are willing to run, and this, again, depends upon the
 consequences which erroneous decisions may have in any particular
 case.

 The whole problem of testing statistical hypotheses, and also that of
 estimation, consists of deducing "best critical regions" Wo, on the basis
 of certain risk parameters, which, themselves, are given by some outside
 considerations, and are taken as data in the statistical theory. We shall
 now indicate briefly the Neyman-Pearson approach to the solution of
 this problem. The fundamental principles of this approach rest upon
 the distinction between the two kinds of errors described above, a dis-
 tinction suggesting itself by recognizing the simple fact that, when we
 desire to test a hypothesis, we imply that it might be wrong, and that,
 therefore, it is necessary to specify in what sense it might be wrong.
 The recognition and precise formulation of such elementary-appar-
 ently almost trivial-principles is often among the very greatest
 achievements of scientific thought.

 Let us first consider the simple case when co? consists of only one
 single probability distribution, say Po, and let the set Q?-O also con-
 tain just one single element, say P15-?Po. We want to test, on the basis
 of a sample point E, the hypothesis Hoy that the true probability dis-
 tribution is PO, the only alternative being that it is Pi. Let Wo be a
 critical region such that the probability P(Wo I PO) is exactly equal to a
 (say a = 0.05). a is called the level of significance, or also, the size of the
 critical region WO, and is an a priori chosen risk parameter. It tells us

 that, if we choose WO as a critical region for rejecting the hypothesis Hoy
 the probability that we shall reject the hypothesis when it is true (i.e.,
 the probability of error of the first kind) is exactly equal to a. But
 there are in general many such different regions Wo of the same size a.
 Now, if the hypothesis is not true, i.e., if the true distribution is P1,
 we want, of course, to have as great a probability as possible of rejecting
 the hypothesis Ho, i.e., we want the probability P(Wo I P1) of E falling
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 into WO when P1 is true, to be as great as possible. This probability
 P(Wo| P1) is called the power of the test WO with respect to the alterna-
 tive P1. Let Wo* be that region of size a for which this power is a maxi-
 mum. We then obviously want to use this region Wo* as our critical
 region, rather than any other region of size a. Wo* is then called the best
 critical region for testing P = Po with respect to the alternative P = P1.

 Suppose now that we enlarge the set Q? - w0 to comprise a whole sys-
 tem of alternative probability distributions. Then, if Wo* above is at
 the same time the best critical region for testing P =Po with respect
 to every element of the set of alternative hypotheses, Wo* is called a
 uniformly most powerful test. In a few important cases it can be shown

 that such regions exist. But this holds only for certain types of hy-

 potheses tested against certain restricted sets of alternatives. And if no

 such test exists, we have to choose some critical region of size a which is
 "as powerful as possible" with respect to the set of alternative hy-

 potheses in question. And the choice of a "best" test will then be some-
 what more subjective. It might be that we have in mind a certain
 system of weights of importance for the errors of the second kind, for

 the various elements in the set of alternative hypotheses. For example,
 if the hypothesis to be tested is that a certain parameter, 0, in a proba-

 bility distribution (the form of which is khown) is equal to a specified
 value, 00, the possible alternatives being all other values of 0 from -o

 to + oc say, it might be that, for some reason, we should consider it
 more important to detect the alternatives 0>00 than the alternatives
 o < 00. The problem of introducing such weight functions has been dis-
 cussed by A. Wald.3

 Above we have assumed that the hypothesis to be tested was a simple
 one, but the general idea is readily extended to composite hypotheses,

 although the technical difficulties of deriving critical regions of the type
 discussed here become more serious. Even the problem of determining

 regions WO that have the same size for every member of the set wO to be
 tested may here present complicated mathematical problems, and

 sometimes no such region exists.4

 Whatever be the principles by which we choose a "best" critical re-
 gion of size a, the essential thing is that a test is always developed with

 respect to a given fixed set of possible alternatives Q?. If, on the basis
 of some general principle, a "best" test, or region, Wo' say, is developed
 for testing a given hypothesis P e wO with respect to a set, Q0, of a

 ' A. Wald, "Contribution to the Theory of Statistical Estimation and Testing
 Hypotheses," Annals of Mathematical Statistics, Vol. 10, December, 1939, pp.
 299-326.

 4See, e.g., W. Feller, "Note on Regions Similar to the Sample Space," Statis-
 tical Research Memoirs, Vol. II, London, 1938, pp. 107-125.
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 priori admissible hypotheses, and if we shift the attention to another
 a priori admissible set, Q', also containing w0, the same general principle
 will, usually, lead to another "best" critical region, say Wo". In other
 words, if a test is developed on the basis of a given set of a priori ad-
 missible hypotheses, Q0, the test is, in general, valid only for this set, Q?.
 By extending the set of admissible hypotheses to include new alterna-

 tives without changing the critical region, one can always find alterna-
 tives such that, whatever be the fixed critical region chosen, its power
 with respect to some of the new alternative hypotheses is very poor.
 This is a more precise expression for such common phrases as: "What is
 the use of testing, say, the significance of regression coefficients, when,
 maybe, the whole assumption of a linear regression equation is wrong?"
 This is just the type of arguments we have discussed above. Usually,
 when we test the significance of regression coefficients, the alternative
 set of hypotheses, Q0, is only the system of regression equations of the
 same form, but with regression coefficients that are different from zero.
 Q? does not include other forms of regressions (although this might very
 well be done).

 In general, if a critical region WO for a given hypothesis Ho be de-
 veloped on the basis of a set, Q?, of a priori admissible hypotheses,
 and if the true hypothesis-instead of belonging to Q0 as assumed-
 actually belongs to Q- Q0 (i.e., the set complementary to Q0), we have
 lost the control of errors, originally ascribed to the test. It might, of
 course, be that the power of the test, even with respect to these hy-
 potheses "off the scheme," is still good, i.e., when one of these new
 alternatives is true instead of the hypothesis tested, the probability o;f
 the sample point falling into WO might be high. But this probability
 might also be very small, even smaller than a, which means that we
 should have an even smaller probability of rejecting the hypothesis
 tested when it is wrong than when it is correct.

 The requirement of a specification of the set of a priori admissible
 hypotheses before constructing a test forces us to state explicitly what
 we assume known beyond doubt, and what we desire to test.

 * * *

 The problem of estimation is the problem of drawing inference, from
 a sample point, as to the probability law of the fundamental probability
 set from which the sample was drawn. The problem of estimation is
 closely connected with the problem of testing statistical hypotheses, in
 fact, estimation may be considered as a particular form of testing
 hypotheses.

 Let xi, X2, ..., x,n be n random variables with the (unknown) proba-
 bility law P(w). Let it be known that P(w) belongs to a parametric
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 class of distributions, Q?, i.e., P(w) is known except for the values of a

 certain finite number of parameters 61, 02, O, k, say. We may write
 this as P(w) =P(wj 01, 02, O, k), or, for short, P(w| 0), where the
 function P is known. A sample, E, is drawn from one of the members of

 Q0, but we do not know from which. The problem is to draw inference
 from E regarding the corresponding values of the parameters 0. Let

 these true unknown values be 0, 0, 0 2 , ko. Any system of values
 of the parameters 0 may be represented by a point, 0, in the parameter
 space, i.e., a k-dimensional Euclidean space, where the axes represent

 the k parameters 0. The problem of estimation is to define a function
 which associates every point, E, in the sample space with a well-defined

 set of points 0 in the parameter space. If this function is such that to
 each point E in the sample space there corresponds one and only one

 point 0 in the parameter space, we speak of point-estimation. If, to each
 point E in the sample space, the estimation formula ascribes a region
 I(E) [or more generally a set of points I(E) ] in the parameter space, we
 speak of interval- (or set-) estimation. In the particular case of point-
 estimation I(E) contains only one point 0 for each E.

 The interval (or set) I(E) is, clearly, a random set, because it is a
 function of the sample point E. We may, therefore, speak of the proba-
 bility, ,B say, of a set I(E) covering the true parameter point 0?, and we
 may choose the value of ,B according to the amount of risk we are willing
 to take, say 3 = 0.95. Since we do not know the true parameter point 0?,
 /3 ought to be independent of 00, i.e., whatever be the true parameter
 point 00 of the distribution from which we draw the sample, the proba-

 bility P(60 ? II 00)5 should be the same. A is called the confidence co-
 efficient for the estimate of 00, and the corresponding I(E) is called a
 confidence interval (or, more generally, a confidence set) for the true
 parameter point.

 Now consider the set of all a priori admissible parameter points cor-
 responding to Q0. This set of parameter points may be considered as

 the set of all simple hypotheses contained in Q?, i.e., all hypotheses
 0 = 00, where 00 may be any point among the a priori admissible set of

 parameter points. (We now consider 00 as a variable point.) Assume

 that for every simple hypothesis 0 = 00, in the a priori admissible set Q?,
 we construct, by some principle, a "best" critical region Wo(60) of size a,
 as described above. Wo(60) is the region (or set) of rejection of 06=0.
 R- Wo(00) is, therefore, the region of nonrejection or, for short, the
 region of acceptance of 6=60, and its size is 1- a. Let 1- a = 3 = the
 confidence coefficient for estimating the parameter point by means of a
 sample point. Let E1 be any arbitrarily fixed sample point. Since we

 ' When using the notation 00 ? I we should remember that 00 is the constant
 element, while I is the random variable.
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 assume that the true hypothesis is contained in Q?, it is reasonable to
 require that, in our system of regions of acceptance, Rn- Wo(0G), there
 should be at least one region such that E1 belongs to it. In general,
 E1 will be an element of a whole system of regions of acceptance. Con-

 sider all the regions of acceptance of size ,B, of which E1 is a member.

 To each region of acceptance, Rn- Wo(0G), corresponds a point in the
 parameter space, namely the point 0G representing the hypothesis 0G for
 which Wo(00) is a region of rejection. To the system of all the regions of
 acceptance of which E1 is a member, there corresponds, therefore, a set
 of parameter points, say I(E1). Since E1 was arbitrary and, therefore,

 might be any point E in the sample space, this defines a function I(E)
 for every E. This I(E) clearly has the properties of a confidence set for
 estimating the parameters 6 by means of a sample point E, because,
 whatever be the true parameter point 00, the probability that a sample
 point E falls into its corresponding region of acceptance is 1- a = 3 =

 constant, and whenever E falls into the region of acceptance for a- ?,
 then also 0 e I(E). The probability that I(E) covers the true parame-
 ter point, no matter what this is, is therefore equal to ,B.

 The estimation problem may be formulated more generally. Let

 Xl, X2, ... , xn, be n random variables with the probability distribution
 P(w), about which it is known only that it belongs to a certain a priori
 admissible set, Q?, of distribution functions. Q? may be considered as

 the set of all a priori admissible simple hypotheses. For each of these
 simple hypotheses let there be constructed a certain region of accep-
 tance, U, of size ,B, and let (U) be the family of all such regions corre-

 sponding to the set W. A sample point E1 is given. Let [U(E1) ] be the
 family of all those regions of acceptance of which E1 is a member, and
 let I(E1) be the set of all simple hypotheses (contained in Q?) which
 correspond to the system of regions [U(E1)]. Since E1 might be any

 point E, there corresponds an I(E) to every E. I(E), thus defined, is a
 confidence set with the confidence coefficient A, i.e., the probability that

 I(E) will contain the true member of Q?, no matter what this is, is
 equal to f3.

 16. General Formulation of the Problem of
 Testing Economic Relations

 The Neyman-Pearson theory of testing statistical hypotheses is
 purely abstract, like any other theoretical scheme. The question which
 interests us here is therefore: Does this scheme represent a useful in-
 strument by which to deal with the problem of verifying economic theo-
 ries? Can it help us to understand better the nature of these problems,
 and to reach practical solutions of them? I think these questions may be
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 answered very much in the affirmative. The following discussion will,
 it is hoped, support this view.

 We shall attempt to give a general, axiomatic, formulation of the
 problem of testing economic relations, using principles of the Neyman-
 Pearson theory.

 A. Data relevant to econometric research

 The objects of economic research are variations and covariations

 within groups of phenomena of economic life. Let K1, K2, * * X K., be
 such a group. K1 may, e.g., mean a certain type of consumption goods,
 K2 may denote the phenomenon called "price" of K1 etc. Each K is
 just the name of a certain category of real phenomena conceived of as
 more or less equivalent, and distinct from those in other categories.
 Many kinds of variations and shifting conditions may unfold them-
 selves within each such category. We are here interested in only
 such variations as are shown by a certain measurable characteristic
 of each K. Let these n measurable characteristics be denoted by
 xI, x2, * * , x., respectively, and let (Xi, X2ti, . . ., Xnti) be a set of
 values observed jointly for the n K's, ti indicating "observation at point
 of time ti," or simply observation No. i (t1, t2, * * * etc., need not be
 equidistant). Let

 (Xlti, X2ti, . . .) Xnt,))

 (15.1) (Xit2, X2t2 . X Xnt2)

 (XltN, X2tN , * X XntN)

 be a system of N such joint observations. Each column in (15.1) repre-
 sents a series of measurements of "the same variable," e.g., a time se-
 ries.

 B. Fundamental assumption about the nature of economic data

 The nN values (Xit, X2t, . . . X Xnt), t = t1, t2, . . ., tN, in the system
 (15.1) of N value-sets, may be considered as a sample point E in the
 nN-dimensional sample space of nN random variables (Xlt, X2t, * * * Xn t),
 t= t1, t2, . . . X tN, with a certain joint integral probability law P(w). (w de-
 notes an arbitrary point-set in the nN-dimensional sample space.)
 What this assumption means is the following: Consider the situation
 before the sample (15.1) was drawn, i.e., consider the system (15.1) as
 nN empty cells. And consider the whole set of alternative systems, each
 of nN elements, which, a priori, might fill the nN cells. The above as-
 sumption amounts to assuming-as a fact or by a hypothetical con-
 struction-that, before the sample was drawn, there was a set of such
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 systems satisfying the requirements of a fundamental probability set as
 defined in Section 9. This assumption is extremely general, as is seen
 from the definition of a random variable in Section 9.

 It is indeed difficult to conceive of any case which would be con-
 tradictory to this assumption. For the purpose of testing hypotheses
 it is not even necessary to assume that the sample could actually be
 repeated. We make hypothetical statements before we draw the sample,
 and we are only concerned with whether the sample rejects or does not
 reject an a priori hypothesis. The above assumption covers also, as a
 particular case, the situation where, for certain cells in (15.1), there
 would actually be just one fixed system of numbers that could fill
 these cells, i.e., the case where-for some of the cells in (15.1)-certain
 fixed values of the corresponding x's have probability = 1 (i.e., they are
 stochastically constant). This is of importance in many economic prob-
 lems where some of the variables are considered as autonomously given.

 C. The formulation of a theoretical stochastic scheme

 There are two kinds of abstract schemes occurring in economic the-

 ory, namely, one type which we introduce merely as a matter of exercise
 in logical reasoning or as a model of an idealized economy (i.e., schemes

 for which a comparison with reality has no meaning), and another type
 which-although abstract-we think may have some bearing upon real
 economic phenomena. For our study here only the latter is relevant.

 In constructing schemes of this latter type we nearly always haye
 some real phenomena in mind, and we try to include in the scheme-
 in a simplified manner, of course-certain characteristic elements of

 reality. At the same time we realize that such schemes can never give
 a complete picture of reality. We must allow for certain discrepancies.
 In Chapter III we discussed how a stochastic scheme might be used for

 this purpose. Because of the very general definition of random varia-
 bles, stochastic schemes represent an extremely general class of theo-
 retical models. We shall, therefore, assume that the problem of testing

 economic relations consists in confronting certain specified stochastic

 models with a set of data (15.1).
 Let

 , ,

 Xltiy X2t4, * * Xnti
 , ,

 (15.2) Xlt2) X2t2 . . X Xnt2,

 X1eN, X2tN, , XntN,

 denote a system of theoretical random variables to be compared with
 the corresponding observed variables in (15.1).
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 Further, let
 fEltl If2fly . . .* Xfmtly

 (15.3) Elt2, E2t2,

 EltNy E2tN, . . M4N)

 be another system of mN random variables introduced in the theoreti-

 cal scheme as auxiliary random parameters, possessing certain specified
 joint distribution properties. (The E's may also be introduced as coun-
 terparts to some real phenomena. See Section 11.)

 Finally, let

 (15.4) al, 2 . . . X ak

 be a set of constants.

 Now we impose a system of restrictions,

 fti[X,Ity $lti_a, * Xl ]$tl; X2t,, X2ti-ly * X 2ti; *.*.*

 (15.5) xnti) Xnt,-1 . . . ) xnti1; (Xo); Ci, C2* C,k;

 Etij,E 2t1i . * *mtjO = ,l (i = 1, 2, , N),

 upon the quantities (15.2)--(15.4). Here fti is a specified function for
 each value of i, i = 1, 2, , N. (In particular all the f's might be the
 same, independent of t; then only the arguments of the function would
 change.) (XO) is a short symbol for a set of initial conditions, i.e., the val-
 ues of x jt (j= 1, 2, * * * , n), for t = to,L L1, t2, * * * . Such quantities may
 or may not enter into (15.5). If they do, we assume them to be constants
 having known values.

 (15.5) is, for each point of time, t = tl, t2, N, t, a stochastical rela-
 tion, defining, implicitly, one of the variables, say xi t,', as a function of

 (1) the previous values of that same variable,
 (2) the simultaneous and the previous values of the other variables x',
 (3) m random variables E.

 Let (15.5) be our economic theory to be tested, the random variables
 e having certain prescribed distribution properties. The principal task
 of economic theory is to make a fruitful choice of the forms f.

 In this general formulation, (15.5) with its associated assumptions
 about the E's may represent a static or a dynamic theory. Assume, as

 above, that each equation (15.5) can be solved for x'lti, i = 1, 2, . . , N.
 The theory is then static if (1) only variables x' for the same point of
 time ti enter into each of the equations (15.5), and, at the same time,

 (2) the n-1 random variables X'2ti, XS3ti, . *, x',t,, and the m random
 variables eit f2til I * , * . (i = 1, 2, * * , N), are assumed to be sto-
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 chastically independent of the previous values of the variables x' and
 the previous values of the variables E. Otherwise the theory is dynamic
 in the sense that "what happens at point of time t; depends upon what
 happened previously."

 (15.5) is, of course, an empty statement about the variables (15.2)
 unless we know something about the random variables e in addition to
 (15.5), for-whatever be the variables x'-we could define such vari-
 ables E that (15.5) would be fulfilled. We must make some additional
 statement (however weak) about the properties of the joint conditional
 probability law of all the variables E for given values of the (n-1)N
 "independent" variables, which we assumed to be X'2t, X'3t, , X'.t
 (t = tl, t2, , t N). When that is done, it follows from (15.5) that the
 joint probability law of all the variables x' in (15.2) can not be just any
 distribution, it must belong to a (more or less) restricted class of proba-
 bility laws.

 As an example, suppose that (15.5) were of the form

 (15.5') Xlt- alE2t,- lt, = 0 (i = 1, 2, , N),

 and suppose that the variables E were assumed to be distributed

 independently of the variables X2ti'. And let pl(Elt, 1lf1, . . ., E1tN)
 be the joint elementary probability law of the N variables E. Then
 it follows that, for given values of the variables X'2 ti, the variables
 xitli have the joint elementary probability law pJ(x'itl- alX'24t),
 (x'lt2- alx'2g2), , (x1tN- alx'2tN)]. And hence, whatever be the ele-
 mentary probability law, P2 say, of all the variables X'2ti themselves,
 the joint elementary probability law, p3 say, of the 2N variables x'
 must have the form p3= Pl- P2

 Thus, (15.5) together with any additional assumption made as to the
 distribution properties of the &'s, will imply that the nN-dimensional
 probability law of the nN random x' must belong to a certain restricted
 subclass, co say, of the class of all possible nN-dimensional probability
 laws. At the same time, this is also, clearly, all that our theory implies,
 so far as possible observations of the variables x' are concerned. [The
 equations (15.5) say, of course, much more about the variables x' and
 the variables e taken together, but-by assumption-there is no possi-
 bility of observing individual values of the E's. ] Now, if we add a new
 system of nN equations, namely, x=x', i.e., if we identify each theo-
 retical variable x' in the system (15.2) with the corresponding observed
 variable in (15.1), our theory leads to a statistical hypothesis, namely,
 the hypothesis that P(w) E co. We shall formulate this a little more in
 detail.
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 D. The formulation of (15.5) as a statistical hypothesis with respect to
 the probability law of the observable variables (15.1)

 Let ? denote a point in the mN-dimensional sample space of the
 variables e in (15.3). And let D(E ? v), where v is the argument of
 the set-function D, denote the joint conditional integral probabil-
 ity law of the mN variables e, given the values of the (n - 1)N variables

 x'2t, x'3t, , x'nt (t=t1, t2, * *, tN) (the "independent variables").
 This distribution is at our disposal in formulating the theory. It, there-

 fore, belongs-by hypothesis-to a certain set, S say, of mN-dimen-

 sional probability laws. In case we have specified the distribution D of
 the variables e completely in our theory, S contains only one element.

 We shall consider the general case where the values of the parame-
 ters a in (15.5) are not fixed by theory, but are at our disposal, i.e., we

 are prepared to accept any values of the a's. Then the definition of S,

 and the restrictions (15.5), define a certain class, w say, of probability
 laws of the variables x'. This class X we could imagine to be obtained

 by the following process:

 Consider one single member D of the system S, and consider all pos-
 sible joint distributions of the variables x', subject to the restrictions
 (15.5), for an arbitrarily fixed system of values of the a's. Repeat this
 process for (1) all possible value-systems of the parameters a and (2) for

 every member of the system S. All the joint probability laws of the

 variables x' obtained in this way together form the class w.

 We are interested in whether P(w), i.e., the joint probability law of
 the nN observable variables x, belongs to w. The hypothesis to be tested
 is, therefore,

 (15.6) P(w) s co; admissible alternatives: P(w) e (Q-);

 where Q is the set of all nN-dimensional probability laws.
 This formulation of the problem of testing economic relations is very

 general. In order to develop nontrivial tests it is, however, necessary
 to impose further restrictions upon the sets Q and co (in particular, by
 restricting the set S of conditional probability laws of the random vari-
 ables e). We shall mention some important types of restrictions of the
 sets Q and w.

 (1) Restriction of the random variables e to variables following cer-
 tain simple probability laws, or restriction of the system S to a certain

 parametric family of distributions, or even to one perfectly specified
 distribution.

 (2) Restriction of the set of a priori admissible hypotheses to such a

 set, Q?, as the w defined above, i.e., to the set of all probability dis-
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 tributions that are compatible with (15.5) for at least one system of
 values of the parameters a, and then restriction of the set of probability
 laws to be tested to a particular subset, w& say, of this Q?, corresponding
 to one fixed system of values of the parameters a (e.g., test of signifi-
 cance). This means that we are sure-or that we accept without test-
 that the theory (15.5) is all right so far as the forms of the functions f
 are concerned.

 (3) Restrictions imposed upon the variables x' by some other rela-
 tionships in the economic theory besides (15.5). This is very often the
 case when we consider systems of economic relations, and it must be
 taken account of in formulating the set w0 above.

 An interesting and important question in this connection is the fol-
 lowing: Is a test of the hypothesis (15.6) also a test of the "correctness"
 of the form of the f's in (15.5)?

 First of all, what is a "correct" system of functions ft? A pre-
 cise answer can be given to this question, namely: Any system of
 functions f, which is such that [P(w)] E ((ft1, ft2, . . , ftp), where
 w(ft1, ft2, * . *, ftN), or, for short, c(f), denotes the set w (or w0) corre-
 sponding to that system of f's, is a correct system of functions f. There
 will, therefore, in general be an infinity of "correct" theories (15.5).
 In particular, there might be various different systems of f's which-
 together with various assumptions about the distribution properties of
 the E's-all lead to identically the same set of probability laws co, i.e.,
 they are indistinguishable from the point of view of observations. This,
 of course, does not mean that all "correct" forms of theories are equally
 good, or "interesting," e.g., for prediction purposes. The "goodness" of
 a stochastical relation, if it be a "correct" one, will in general be judged
 from the properties of the random variables e which it contains. Usu-
 ally we want these errors to be "small," in some sense or another.

 Now, let w(fO, S) be a set of probability laws of the variables x',
 defined by a particular system, fO, of functions in (15.5) and a set S of
 e-distributions. Then, if a test Wo of the hypothesis P(w) ? w(fO, S)
 should have high power with respect to every alternative not contained
 in w(fO, S), the test Wo would, of course, also have a high power of de-
 tecting, in particular, a wrong choice of the forms f?.

 If we try, however, to test a hypothesis (15.6), the alternatives being,
 so to speak, "everything else" (i.e., the set of a priori admissible hy-
 potheses is Q), then, no matter what be the test chosen, there will
 always within this "everything else" be alternatives for which the
 power of the test is very poor. In case one of these alternatives were
 actually the true one, we should have only a very slight chance of
 rejecting the hypothesis tested. In all practical cases it is, therefore,
 necessary to be able to restrict, in advance, the set of admissible hy-
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 potheses Q? as much as possible, having at the same time strong reasons
 to believe that the true hypothesis is not outside this Q?.

 * * *

 We have not here gone into any technical details as to the actual
 construction of tests, the theory of which was described briefly in Sec-
 tion 14. Our purpose has been to show how an economist should formu-
 late testing problems for which he asks the help of a statistician. To

 give a more concrete illustration, however, we shall in the next section

 consider a simple, but rather important, example from economic sta-

 tistics, namely the problem of testing a time series for trend, assuming
 that its additional variations are random variables of a simple type.

 16. Example of Testing Hypotheses: A Simple Problem of Trend Fitting

 Let yt be an observable time series, where t= 1, 2, . . . , N, denote N
 equidistant, discrete points of time. Suppose we know, or believe without
 test, that the following model (where E means "expected value of") is
 true:

 (16.1) yt = kt + b + et (t=1, 2, , N),

 (16.2) E(yt I t) = kt + b (t = 1,2, 2 * , N),
 (16.2') E(et) = 0, E(et2) = a2 (independent of t),

 (16.3) P(Yt I t) = e-(12a)(yt-k

 a is assumed to be numerically known (for the sake of simplicity of our
 illustration in the following).

 Consider N populations (or universes) corresponding to the N fixed

 values 1, 2, . . . , N, of t. For each t, yt is normally distributed about
 the mean (kt+b) with variance a2. For each value of t we assume that

 we draw exactly one value of yt, such that these drawings are stochasti-
 cally independent. The sampling distribution of these N drawings is,
 therefore,

 P(Yly Y2y * * ,YN)

 (16.4) 1 [-1z (yt-kt-b)2]
 exp y-kt-b2

 (V2/~7r-.a)N 2a2

 means EN , throughout this section).
 All these things are assumed known, the only unknown elements in

 our set-up being the values of the constants k and b; i.e., we know that

 it is possible to choose k and b such that the observable series yt satisfy
 our model.
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 By the method of least squares [or by the method of maximum

 likelihood applied to (16.4) ] we obtain the following estimation formula
 for the parameter k:

 (16.5) Est. of k E t2

 where t and y denote the observed arithmetic means of t and y respec-
 tively. k is, of course, a random variable in repeated samples (each of N
 drawings, the t's being the same all the time). Using (16.1) we have

 6 (t-b)(kt + b + et- ki-b-) = E (t_ -et (16.6) fi = ---- = k +
 S(t_ 2 E(t-02

 Thus, E(k) =k, i.e., we have an unbiased estimate. We want to test the
 hypothesis that k = 0. What is the set of a priori admissible hypotheses,
 i.e., the set QO?? It is: The system of all probability distributions (16.4)

 obtained by letting k and b run (independently) through all values from
 - oo to + co, and no other alternatives. The hypothesis to be tested is
 that k=O, b being anything from - oo to + oo, i.e., the set co? is the
 system of all probability distributions obtained from (16.4) by putting

 k = 0 and letting b take, successively, all values from - oo to + oo . We,
 therefore, have a composite hypothesis to be tested.

 To test k = 0 we have to choose a critical region of rejection Wo in
 the N-dimensional sample space of the variables y such that the proba-

 bility of a sample point falling into WO, no matter what be the value
 of b, is equal to a (say 0.05) when the hypothesis k = 0 is true; and be-

 sides, the region WO should be such that the probability of a sample
 point falling into it when the hypothesis k = 0 is false is as great as
 possible, and independent of the value of b.

 Let us for this purpose consider the sampling distribution of the esti-
 mate k. From (16.6) it is seen that k is a linear function of the N inde-
 pendent normally distributed variables ei, E2, * * *, EN, the t's being a
 set of constants-by assumption. & itself is, therefore, also normally
 distributed with

 a2

 (16.7) mean = k, variance = (t -

 The distribution of i is independent of b, and we have

 (16.8) p(c) = V -exp [- Z(t2 k-k)

 And corresponding to our hypothesis to be tested, k = 0, we have

 (\ V = t-t2 r e(tb 2 12
 (16.8') po(k) - \/2 exp [ka
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 Let us consider the following two equal "tails" of this distribution

 (16.9) k < -K = ca and k > + K = + ca
 u (t_ U2 a (t - o2

 where c is a positive constant so determined that
 +K

 (16.10) 1 - po(k)dXi = a (= 0.05, say).
 -K

 The two intervals (16.9) together define a certain region of rejection
 W0 in the sample space of the variables y, because k is, by (16.5), a
 single-valued function of the y's. The probability-when the hypothesis
 k = 0 is actually true-that k should fall in either of the two intervals
 (16.9) is the same as the probability that the sample point falls into Wo,
 and this probability is exactly equal to a. On the other hand, what are
 the properties of this critical region if the hypothesis is wrong, i.e.,
 if k #O? It has been shown that the region of rejection Wo corresponding
 to the two tails (16.9) has the following properties:'

 Whenever the hypothesis k = 0 is wrong, i.e., when k 5 0, the proba-
 bility that the sample point should fall into W0 (i.e., the power of the
 test) is > a, which means that the test is unbiased. And for any other

 unbiased critical region of size a the power is smaller.
 If we reject the hypothesis k = 0 whenever k falls in either one of the

 intervals (16.9) we thus have a best unbiased test of the hypothesis
 k = 0 corresponding to the level of significance a.

 The probability that k should fall into either of the intervals (16.9)
 when kO, i.e., the power of the test, can be calculated as a function
 of k directly from (16.8). This power-function-let us call it A(k)-is
 simply

 (16.11) ,B(k)=1- ex ex [---k k - )2dk)

 where K is given by (16.9).
 Let us, as an example, take N = 9, a = 1, a = 0.05, c = 1.96 (from tables

 of the normal curve). We then have 2; (t- )2=60. If we introduce these
 numerical values, and change the variable of integration by the trans-

 formation K=(1/a)0\)V (t[)2(k-k), (16.11) becomes
 1 + 1.+1.96- 60k

 (16.11') i3(k) = 1 - exp [- 2K2]dK.
 V\2/r -1.96-\60k

 Values of A(k) for different values of k then follow directly from tables
 of the normal distribution.

 6 See, e.g., Neyman, Lectures and Conferences on Mathematical Statistics, Wash-
 ington, 1937, p. 29.
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 In Table 1 are given the results for a few values of k. The smooth
 curve in Figure 3 represents the continuous power function 3(k).

 TABLE I

 the probability that we shall reject
 If the true value of k is k=0 by the test (16.9) (i.e., the

 power of the test) is

 k [:(k)

 0 0.05 (=a)
 ?0.1 0.12
 ?0.2 0.34
 ?0.3 0.64
 ?0.4 0.87
 ?0.5 0.97 'l ' l | I 1.0 I

 0.& G-Q.4)

 ft-0.3) oh. 0.3)

 -0.6 -05 -04 -0.3 -0.2 -0.1 0 OJ 0.2 03 0.4 05 0.6

 FIGURE 3.-The Power Function of the Test (16.9).
 (N=9, a=l, a=0.05, c=1.96)

 Horizontal axis gives values of k (k=O is the hypothesis tested; other values
 of k represent alternative hypotheses).

 Vertical axis gives values of ,8(k), representing the probability of k falling into
 the region of rejection (16.9) for the hypothesis k=0, when k is the true value
 of the parameter.

 a =0.05 represents the level of significance.
 The encircled points ((0) show the power of the same test (16.9) when the C's

 are dependent as defined by (16.12).
 This graph (the smooth curve) shows, for k F0, the probability of rejecting-

 correctly-the hypothesis k =0 when it is false. The further away from k =0 we
 get, the greater is the probability that we shall reject k =0. [8(k) is the probability
 of not making an error of the second kind, considered as a function of the true k.
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 Now we shall consider an example showing what happens if the alter-
 native which is actually true is not included in the set of a priori ad-

 missible hypotheses Q? which was the basis for the above test.

 One of the restrictions above was that the 's in the N observations
 were stochastically independent. This was taken as a known fact, and
 not as a hypothesis which might be right or wrong. Suppose that we

 were not justified in doing so. As an example, let us assume that, without
 our knowledge and while proceeding as if our original scheme were cor-

 rect, the actual series of e's is of the following nature:

 Let to, 41, ..., IN, be N + 1 normally and independently distributed
 random variables, each with zero mean and variance = that of the

 's above. And let us consider a new series of 's given by the formulae

 1
 (16.12) et = (t-1 + Qt (t =1, 2, .. * * N).

 Each of these new z's taken separately then has mean 0, and the same

 variance u2 as the former eseries. But et and et+1 are now positively
 correlated (correlation coefficient =-).

 Suppose now that we proceed as if we had to deal with the original
 e-series instead of (16.12). By (16.6) k is still a linear function of nor-
 mally and independently distributed variables, viz.,

 11 (t - b(t-i + ~
 (16.13) k = k + t/_ E (t - t-)2

 and, therefore, k is also- now normally distributed with mean = k, and
 the variance of E is now that of the linear function

 (16.14) (t (t-i +

 which gives

 (16.15) k LL (t_t.2]2[E (t-b2o2+ N-.

 Taking, as in the previous example, N =9, a =1, c = 1.96, we obtain

 1 1
 (16.16) -2 = (60 + 40)

 602 36

 and, therefore, in analogy to (16.11') we now get

 1 r +1.52-6k (16.17) B*(k) = 1- -1.52-6k xp -2

 A*(k) is the probability that ?-calculated by (16.5), the e's being as
 defined by (16.12)-falls into either of the two intervals defined by
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 (16.9), this probability being considered as a function of the parameter

 k. As examples the values of ,3*(k) for k=0, k= +0.3, and k= ?0.4 are
 plotted in Figure 3 (the encircled points). These values, as obtained

 from (16.17), are: ,B*(0) =0.13, ,B*(?0.3) =0.61, and 13*(?0.4)=0.81.
 What do these results show? They show that the test (16.9) for an

 alternative hypothesis (namely dependent e's) not included in Q?, may
 -incorrectly-reject the hypothesis tested (i.e., k = 0), when it is true,

 more frequently than assumed (here 13 per cent instead of 5 per cent).
 That is to say, we had actually constructed the test such that we should

 reject the hypothesis k = 0-when true-in only 5 per cent of the cases

 where the test is applied. But this no longer holds. The reason for this
 is easy to recognize: In order to make a = 0.05 in our first example (with
 independent errors) we had to fix a value of c such that the integral in
 (16.10) should be equal to 0.95. In the present case the integral over the
 same range [given by (16.9) ] is, of course, smaller than 0.95, because the
 variance of the k we now have is greater (namely 1/36 instead of 1/60).
 1 minus this integral is, therefore, greater than a= 0.05.

 Also, we thought that we should be rejecting the false hypothesis k = 0

 in 87 per cent of those cases where k = ? 0.4, while in fact we now do
 so only in 81 per cent of the cases, because, in constructing the test for
 the hypothesis k = 0, we did not take account of the possibility that
 the e's might be dependent.

 The hypothesis k = 0, as well as the alternative hypotheses about k
 in the last set-up, do not mean the same thing as in the first example

 with independent errors. In particular, the hypothesis tested (i.e., k = 0)
 is not the one we set out to test, because it now includes the possibility

 of the errors being dependent. In other words: Even though the hy-
 pothesis k = 0 might be true there is still something wrong with that case
 also-as compared with the hypothesis tested in the case of independ-
 ent errors-namely the correlation between the z's now present. It is
 interesting to note that the test above shows this to some extent, by

 rejecting the hypothesis k = 0 in 13 per cent, and not 5 per cent, of the

 cases where k =0 is actually true. This result, however, is not a general
 one. The opposite may occur in other cases.

 Of course, in the case above the mistake would not be so very bad,
 because it so happens that the power of the test is rather good also for
 the hypotheses outside Q? which we just have considered. And in many
 important cases this might happen; that is to say, even if we develop a

 test only with respect to a certain very restricted class of a priori ad-
 missible hypotheses Q?, this test might-just by sheer luck, so to speak
 -be good also with respect to a much wider class of alternatives.

 The example above illustrates, I think, a very useful method of pro-

 ceeding in testing economic relations: We define first a certain set of a
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 priori admissible schemes, go, containing what we feel strongly to be
 the most important alternatives, and being at the same time such
 that it can be handled without prohibitive technical difficulties. Then,
 later, if-for some reason or another-we become suspicious as to the
 completeness of this Q?, we may study the power of the test for certain
 outside schemes not contained in Q?. For instance, it might be that a
 certain hypothesis outside Q?, i.e., a hypothesis rejected a priori, would,
 if it nevertheless were the true one, have important consequences for
 our decisions. To see what risk we are taking as to this hypothesis by
 using a test that simply neglects the possibility of this hypothesis being
 true, we calculate the power of the test for this outside hypothesis.

 Of course, whatever be the test developed on the basis of a certain
 set, Q?, of a priori admissible hypotheses, it will always be possible to
 find hypotheses outside Q?, such that the power of the test with respect
 to these hypotheses is very poor; at least that is so if we want to have a
 test that is any good at all within Q?. To have some chance of reaching
 nontrivial conclusions we must assume a certain a priori knowledge, or
 be willing to take a certain amount of risk in order to restrict Q?.
 And the total risk involved in restricting Q?0 is one which cannot be
 evaluated in probability terms. The choice of an a priori admissible set
 Q? is, indeed, a matter of general knowledge and intuition.

 The discussion above gives also, I think, a clearer interpretation of
 the general phrase, "Suppose the whole formal set-up of the theory is
 wrong, what is the use of testing significance of coefficients, etc.?" As
 a matter of fact, this question is, strictly speaking, always justified
 when we try to explain reality by a theoretical model. But if we follow
 this attitude to its bitter end, we shall never be able to accomplish any-
 thing in the way of explaining real phenomena.

 17. The Meaning of the Phrase "To Formulate Theories
 by Looking at the Data"

 All models of economic theory, however abstract they may be, proba-
 bly arise from the consideration of some real economic phenomena.
 "Data" in the broad sense of empirical knowledge will, therefore, al-
 ways to some extent influence our formulation of theories about them.

 If we try to give only simplified and condensed descriptions of em-
 pirical cases, there is, of course, no risk in choosing a theory which "fits
 well." The risk comes in if we generalize, in the following sense: We
 specify an empirical class of phenomena (e.g., the class of all corre-
 sponding values of price and quantity sold of a certain commodity).
 We know empirically a certain number of members of this class. We
 form a theoretical class (e.g., a stochastic price-quantity relation) cover-
 ing in particular the known members of the empirical class. We hope
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 that the theoretical class will cover all members of the empirical class.
 To construct such theoretical classes is, indeed, the problem of inductive

 science. And it involves risk of failures, which are beyond our control.
 A general discussion of "right" or "wrong" in connection with such

 empirical, inductive processes would take us into metaphysics.

 But the phrase, "To formulate theories by looking at the data," has,
 among economic research workers, a narrower meaning, which it might

 be worth while to clarify. The common argument is as follows: Suppose
 we have a certain number of observations of simultaneous values of a
 system of economic variables. We have a broadly formulated economic

 theory about these variables, stating that there is some relation be-

 tween the variables, without specifying the form of this relationship.

 We try out a great many different forms of relations, until we find one
 which "fits the data" (in some sense or another). Now, if we finally

 find a form of the relation which "fits well," is this in itself any verifica-
 tion of the "goodness" of that relation as a theory? Is not such a for-

 mula only a trivial restatement of facts?
 Much discussion has taken place on this subject, e.g., in connection

 with the problem of testing business-cycle theories. For instance, a
 great many simplified dynamic models imply that each of the variables
 involved satisfies (apart from error terms) some linear difference equa-

 tion of a certain order, with constant coefficients. It is clear that we
 may reach this same result by starting from different fundamental

 models, i.e., we might construct a great many models that are very
 different as to their basic assumptions or the type of economic mecha-
 nism they describe, and yet they may all imply that the variables,

 separately, satisfy certain linear difference equations as described.
 Now, if the observed series show some rather regular cycles, such differ-

 ence equations may often be made to fit the series very well, by a
 proper choice of the coefficients. And if we accept this as a verification
 that the observed series actually satisfy such difference equations, we
 could say that the "correct" theory must belong to the class of models

 which lead to such difference equations. But we could not by this fitting
 alone pick out the "correct" theory from the class of admissible models.
 And if we choose one particular model, the fact that the corresponding
 difference equations in each variable may be made to fit the data gives

 no guarantee that just this model is the "correct" one. It is, therefore,
 generally argued that such good fits of "final" equations are not worth
 much from the point of view of verifying theories.

 This argument, however, does not quite cover the real trouble point.
 In fact, if we could establish that the observed variables satisfied very
 closely a certain system of linear difference equations (say), we should
 have a strong and very useful restriction upon the class of a priori ad-
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 missible theoretical models. In general, whenever we can establish that
 certain data satisfy certain relationships, we add something to our
 knowledge, namely a restriction of the class of a priori admissible hy-
 potheses. The real difficulty lies in deciding whether or not a given rela-
 tion is actually compatible with the data; and the important thing to

 be analyzed is the reliability of the test by which the decision is made,
 since we have to deal with stochastic relations and random variables,
 not exact relations.

 From this point of view there is, therefore, no justified objection
 against trying out various theories to find one which "fits the data."
 But objections may be made against certain methods of testing the fit.
 Let us examine this a little closer.

 Consider a system of observable random variables, as in (15.1), and
 a relation to be tested, like (15.5). The theory defines a class, o? say,
 of probability laws, and we want to test P(w) e wO. Now we have
 seen that, in order to develop a test of this hypothesis, we have to de-
 fine a set, Q?, of a priori admissible hypotheses. Let (co) be a system
 of different sets w0, corresponding to different relations to be tested,
 and such that each w? is contained in Q?. For any one of these sets wO

 we may test the hypothesis P(w) ? wO, the set of a priori admissible
 hypotheses being constantly the same, namely Q?. It is clearly irrelevant
 how we happen to choose the hypothesis to be tested within Q?. In par-
 ticular, the hypothesis might be one that suggests itself by inspection

 of the data. This is perfectly legitimate as long as the set Q? of admissible
 alternatives is a priori fixed and remains so. For then we can calculate

 the power of the test used, and see what risk we run if we accept the
 hypothesis tested. What is not permissible is to let Q? be a function of
 the sample point. Because then the test no longer controls the two types
 of possible errors in testing hypotheses. If Q? be fixed on the basis of a
 sample point, and a test developed with respect to this set of admissible
 hypotheses, we have no idea whether the true hypothesis is actually
 contained in Q? or not. We should have the untenable situation that
 the method of testing would itself be varying at random from one sample
 to the other.

 The essential thing is, therefore, not the way in which we choose the
 hypothesis to be tested. Essential is what we know or believe to be the

 class of a priori admissible hypotheses, and what power our test has of
 rejecting the hypothesis tested, if a "really different" one among the
 alternatives be true.
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 CHAPTER V

 PROBLEMS OF ESTIMATION

 In Section 14 we described the general problem and the general prin-
 ciples of statistical estimation. More specific estimation problems arise
 in various fields of application. In the following we shall discuss a prob-
 lem which is particularly relevant to economic research, namely that

 of estimating parameters in systems of stochastic equations.
 A most dangerous-but often used-procedure in this field is to "fit

 each equation separately" without regard to the fact that the variables

 involved are, usually, assumed to satisfy, simultaneously, a number of
 other stochastic relations. If that is done, it is afterwards almost sheer
 luck if we have not created inner inconsistency in the system as a

 whole, such as, for instance, the assumption that some of the variables
 in one equation remain constant in repeated samples, while-because of

 another equation in the system-this is impossible. We shall illustrate
 this by an example later (see Section 21).

 Even if no such inconsistency is created, the procedure of "fitting
 each equation separately" usually does not give the most efficient esti-
 mates of the parameters. For additional information about the parame-
 ters in one equation may be contained in the fact that, simultaneously,
 the variables satisfy another equation. And, what is even more impor-
 tant, we may fail to recognize that one or more of the parameters to

 be estimated might, in fact, be arbitrary with respect to the system of
 equations. This is the statistical side of the problem of autonomous rela-
 tions, which we discussed in Section 8. It may be described in words
 as follows:

 Suppose that a certain set of economic variables actually satisfies a
 system of (static or dynamic) equations, each of which we expect to
 have a certain degree of autonomy, so that we are interested in measur-
 ing the constant parameters involved (e.g., certain elasticities). From

 this equation system we can, by algebraic operations, derive an infinity
 of confluent systems. Suppose that, in particular, it is possible to derive

 an infinity of new systems which have exactly the same form as the
 original system, but with different values of the coefficients involved.
 (Usually this means that the number of parameters of the equation
 system may be reduced, as explained in Section 19.) Then, if we do not
 know anything about the values of the parameters in the original equa-
 tion system, it is clearly not possible to obtain a unique estimate of
 them by any number of observations of the variables. And if we did
 obtain some "estimate" that appeared to be unique in such cases, it
 could only be due to the application of estimation formulae leading to

 -84-
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 spurious or biased results. For example, the question of deriving both
 demand and supply curves from the same set of price-quantity data
 is a classical example of this type of problems.

 This question (in the case of linear relations known as the problems
 of multicollinearity) is of great importance in economic research, be-
 cause such research has to build, mostly, on passive observations of facts,
 instead of data obtained by rationally planned experiments (see Chap-
 ter II). And this means that we can obtain only such data as are the
 results of the economic system as it in fact is, and not as it would be
 under those unrestricted hypothetical variations with which we operate
 in economic theory, and in which we are interested for the purpose of
 economic policy. Considerable clarification on this point has been
 reached in recent years, following the pioneer work of Frisch.-

 In the following we shall see that the investigation of this problem of
 indeterminate coefficients, as well as other questions of estimation in
 relation to economic equation systems, all come down to one and the
 same thing, namely, to study the properties of the joint probability distri-
 bution of the random (observable) variables in a stochastic equation system.

 18. General Formulation of the Problem of Estimating
 Parameters in Systems of Economic Relations

 We shall discuss one general class of static systems and one general
 class of dynamic systems.

 A. Static systems

 Let us denote by j-, t2j, , * * , * nj (j1= 2, * , N), N
 "true" measurements of n economic variables. The subscript j indicates
 "observation No. j." The actual measurements of these variables might
 (and usually will) be subject to errors of measurement proper. Let the

 corresponding actually observed variables be xii, defined by

 (18.1) xii = Gii(tij, wi,) (i = 1, 2, . .. , n; j = 1, 2, . .. , N),
 1 R. Frisch, "Correlation and Scatter in Statistical Variables," Nordic Statisti-

 cal Journal, Vol. 1, 1929, pp. 36-102; "Statistical Correlation and the Theory
 of Cluster Types" (joint authorship with B. D. Mudgett), Journal of American
 Statistical Association, Vol. 26, December, 1931, pp. 375-392; Pitfalls in the
 Statistical Construction of Demand and Supply Curves (Ver6ffentlichungen der
 Frankfurter Gesellschaft fiir Konjunkturforschung, Neue Folge, Heft 5), Leipzig,
 1933, 39 pp.; Statistical Confluence Analysis by Means of Complete Regression
 Systems, Publication No. 5 from the Institute of Economics, Oslo, 1934; "Sta-
 tistical versus Theoretical Relations in Economic Macro-Dynamics" (Mimeo-
 graphed Memorandum prepared for the Business Cycle Conference at
 Cambridge, England, July 18-20, 1938, to discuss J. Tinbergen's Publica-
 tions of 1938 for the League of Nations). See also J. Marschak, "Economic
 Interdependence and Statistical Analysis," in Studies in Mathematical Economics
 and Econometrics, in Memory of Henry Schultz, Chicago, 1942, pp. 135-150.
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 or, when solved for -qij,

 (18.1') 77ij = gij(xij, ti,),

 where -tij are random variables characterizing the errors of measure-
 ment, and where Gi% (and gij) are certain known functions. We introduce
 these functions Gij for the following reason: If we wrote just

 (18.2) xij = ,ij + error,

 the distribution of the errors would in general depend upon tij. If this
 be the case we assume it to be possible to write the error part as a known

 function of qij and a new random variable, namely -qij, which is sto-
 chastically independent of tij (and also, of course, independent of thk
 when h, k # i, j). These transformations are expressed by the functions

 Gij in (18.1). This leads us to
 Assumption 1: The nN random variables qij (i=l, 2, **, n;

 j=1, 2, . .. , N), have a joint elementary2 probability law

 (18.3) p1(7tll, * *, 71nN; 'Yll 7Y2, * * Yq)

 which is known, except-perhaps-for the values of q parameters

 Y1, . , y'q, and which is independent of the variables tij and the varia-
 bles e defined below.

 Assumption 2: The (n-m)N quantities Sm+1, * * nj (j=1,
 2, , N; m<n), are considered as constants in repeated samples.
 The economic meaning of this is that these variables are autonomous
 parameters fixed by forces external to the economic sector under con-
 sideration.3

 Assumption 3: The mN quantities (1, * * , ,q (j=1 2, . . . , N) are
 random variables ("dependent variables") in repeated samples, and are

 known to satisfy m stochastical equations,

 (18.4) fi[411, 421, * * . . . mj; 4m+i,j, . . . X nj; aly a2, . . . , ak;

 fl1y E2jy~ . . Ehij =0

 (h > m; i= 1, 2, m; j = 1, 2, N),

 where al, a2, . . . , ak, are k unknown constants, and where elf, e2j, *, Ehj
 (j= 1, 2, * * *, N) are hN random variables. Here al, a2, * * , ak mean
 all the unknown constants in the whole system of equations (18.4).

 2 For the sake of simplicity we restrict ourselves, in this and the following
 sections, to cases where the elementary probability laws are assumed to exist.
 However, in point of principle, there would be no difficulty in reformulating our
 statements on the basis of integral probability laws.

 3 This assumption might, if it be desirable, be replaced by the assumption
 that the autonomous i's are themselves random variables. That would cause only
 small changes in the subsequent formulations.
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 There might actually be only a few of them present in each of the m
 equations. And similarly for the h e's.

 (18.4) represents an economic theory when certain restrictions are
 imposed upon the distribution of the e's characterizing the stochastical
 model.

 Assumption 4: The hN random variables el;, .2j, * * . I hj (j=1,
 2, * , N) have a joint elementary probability law

 (18.5) P2(flly .. * *, hN I {m+l,ly .. * * ,(N; 01) 02) * Or)

 (i.e., the conditional distribution of the hN e's, when the autonomous
 ('s are given), which is known, except-perhaps-for the values of r
 parameters ,13, * * *, Or. By introducing a considerable number of 3's,
 P2 may be made to comprise a wide class of distributions.

 The problem is: To estimate the values of al, a2, . ., a.k, on the basis
 of a sample point (x11, x21, * , xn1, x12, x22, . , xn2, X, XL, X2N,
 * * * XnN) in the nN dimensional sample space of the observable varia-

 bles x. And in order to do this it may, or may not, be necessary also
 to estimate the parameters 7 and ,3 in (18.3) and (18.5). We shall now
 see that this problem is a problem of statistical estimation as described
 under Section 14.

 From the mN equations (18.4) we may (under certain conditions for
 solvability) express mN of the hN e's as functions of the mN random
 variables cii, * * and the (h - m)N remaining e's. These functions
 will, in general, involve the parameters a and the (n - m)N autonomous
 i's. Introducing these expressions for mN e's into (18.5), multiplying
 by the Jacobian of the transformation, and integrating over the
 (h - m)N remaining e's from - oo to + oo , we obtain the joint elemen-
 tary probability law of the mN ("dependent") variables cii, *, {mN.
 Let this probability law be

 (18.6) PN , P2 ... P an]
 Oly 02y * - * X Or; {m+l ,ly . . . X {nN ]

 This is the conditional distribution of the mN random variables
 t11, * * *, {mNN for given values of the autonomous i's. By assumption,
 this distribution is independent of the variables v defined by (18.1').
 Therefore, the joint distribution of (ell, * , nmN) and (71, 77, nN)
 is equal to

 (18.7) Pl P3.

 Introducing the transformations (18.1') in (18.7) and integrating the
 result with respect to the mN random variables o * mN from-o
 to + oo, we obtain the joint elementary probability law of the nN ran-
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 dom variables xtj (the observed variables). Let this probability law be

 44xu,t * , X,xf j {m+1, l} * nN;
 (18.8)

 ?a12 .. * *a (k; fl12 .. * o r; tY1) .. * TAq

 We can now say: Our economic theory, so far as the observable varia-
 bles x are concerned, is indistinguishable from (and it may even be
 equivalent to) the statement that the observable variables x have the joint
 probability law (18.8), where 4) is a known function. And the problem
 of estimating the unknown parameters is reduced to an ordinary prob-
 lem of statistical estimation.

 If, in particular, all the variables be observed without errors of meas-
 urement, our economic theory would be expressed by (18.6).

 If, in particular, all the autonomous {'s be measured without errors,
 we should-instead of (18.8)-have4

 188)1(X11 ... * *XmN j {m+l,l, * * - a {nN;
 (18.8')

 a,, * * * ahk; 1ly .. * * Or;'Yf ... X * }tQ%

 that is to say, a distribution with only mN instead of nN random vari-
 ables x.

 In (18.8) the (n-m)N autonomous ('s are unknown parameters
 which it might or might not be necessary to estimate in order to esti-
 mate the a's.

 Clearly no more complete description of the interconnections be-
 tween a certain number of random variables can be given than that
 which is contained in their joint probability law. If, therefore, two differ-
 ent formulations of an economic theory lead to identically the same joint
 probability law of the observable random variables involved, we can
 not distinguish between them on the basis of observations. (But the theories
 may not be equivalent in certain other respects.)

 The joint probability law of all the variables covers also the particu-
 lar case where the set of random variables can be split up into independ-
 ently distributed subgroups of variables with different parameters to be
 estimated occurring in the distribution of each subgroup. And in all
 other cases the joint probability law of all the variables contains more
 information than that obtained from the probability laws of subgroups
 of variables. It is, therefore, clear that the joint probability law of all
 the observable random variables in an economic system is the only gen-
 eral basis for estimating the unknown parameters of the system.

 4 Here 'ye' denote the parameters in an mN-dimensional distribution instead of
 the nN-dimensional distribution (18.3).
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 B. Dynamic systems

 We shall consider the following general type of dynamic economic
 systems (making similar assumptions to those above):

 Let V1(ti), 62(ti), . , (t ) n * * ,(ti) be n time series defined at
 the points of time

 (18.9) tN) tN-_) . . . tl, toy t-ly t_ 2, y

 For the moment we shall neglect the problem of errors of measurement
 proper.

 The (n-m) series {.+I(ti), *, (t.), are assumed to be autono-
 mous variables, they are assumed to remain fixed in repeated samples.

 For each point of time (18.9) the quantities t1(t,), , (^(tj) are
 random variables defined implicitly by a system of dynamic relations

 of the type

 ti(ti) = Ft,i'l [ti(t,), t1(ti_,), .. * ;6(ti)y 62(4-1),***;

 ti(ti-1) , tj(ti-2) - ' * *; - * ; {mQ (ti)Xm(ti-1), ***

 ( 18. 10) tm+1 (ti) X tm+1 (4t-1) X * * *; * ; tn ( ti) X t(ti-l))X***

 011) (X2, . . . , ak; f 1tv f2fiy . . .* Xhti ]

 (i = 1, 2, ., N;j = 1, 2, ,m; h > m).

 Or, expressed in words: Each of the "dependent" variables

 ti(ti), * - , t(ti), is a function of (1) the previous values of that
 same variable and (2) the simultaneous and the previous values of

 the other n-1 variables. The m functions Ft,(D may be different for
 each point of time ti, but they have known forms.

 The system (18.10) involves, altogether, k unknown constants

 al, a2, a, k, some or all of which might be lacking in any particu-
 lar one of the equations. For each point of time t, the system involves,

 altogether, h random variables e, which have certain known distribu-
 tion properties. We refer all these h random variables e to the same
 point of time as that for the variable to the left in (18.10), although
 the actual events from which they emerge might take place at different
 points of time. This is merely a simple transformation of variables in
 the joint probability law of all the e's. If there happens to be func-
 tional relationship between the e's at two different points of time (e.g.,

 =, t,ers._), the dimensionality of the joint distribution of all the
 hN e's can be correspondingly reduced.

 (18.10) gives, altogether, mN equations. From these equations we can
 (under certain conditions for solvability) express the mN random vari-
 ables {1(ti), * * *, ,(t,) (i= 1, 2, * * , N) as functions of: (1) initial
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 conditions, i.e., all (or some) of the values of {1(ts), - - *, &,(ti) for
 i=0, -1, -2, -..-; (2) the values of the autonomous variables
 (m+i(ti), ***, ((ti), for i= 1, 2, , N; (3) the hN random variables

 (lt, ** , (t,(i = 1 2,*^ , N).
 We shall assume the initial conditions to be given and constant in

 repeated samples. For short we denote the whole set of initial condi-
 tions by (tO)

 Let

 (18.11) P2 I[ltl, . . . EhCh 1 |m+l(tl), . . . , (tN) (O); 1 P2, , * 3r

 be the joint elementary probability law of all the hN random variables e
 for given initial conditions of the t's and given values of the autonomous
 Vs. (p2' might or might not actually depend upon these quantities.)
 The ,B's are parameters which might or might not be known.

 Since the mN random variables (1(ti), . . *, m(ti) (i= 1, 2, . . ., N),
 can be expressed as functions of the random variables e, we can derive
 the joint distribution of the mN random variables t1(ti), .. * , (m(t )
 (i= 1, 2, * * *, N) in exactly the same manner as was discussed under A
 above. Let this probability distribution be

 (18.12) P3 [61(t1) ... , (m(tN) I tm+l(tl)y . i WtnN);
 (t?); ai, * * * , ak; f1 *** p]

 If the measurements of the t's (but not those of the initial condi-
 tions) are subject to errors, we have an additional problem exactly
 similar to that discussed for static systems.

 The problem of estimating the parameters in a dynamic system of
 the form (18.10) is, therefore, reduced to the problem of estimating the
 parameters of an mN- (or nN-) dimensional elementary probability law,
 by means of a sample point associated with this probability law. 5

 This way of condensing the statements implied in a system of sto-
 chastic relations may be extended to more general classes of economic
 schemes. And this procedure is not only convenient but, I think, neces-
 sary, if we want to make sure that the various assumptions made about
 the distribution properties of the random variables involved do not
 lead to inner contradictions, like those we mentioned in the introduc-
 tion to this chapter.

 * * *

 We are now in a position to formulate precisely the two fundamental

 b For explicit estimation formulae and confidence limits, etc., in the case of a
 system of linear stochastic difference equations see the article by H. B. Mann
 and A. Wald, "On the Statistical Treatment of Linear Stochastic Difference
 Equations," ECONOMETRICA, Vol. 11, July-October, 1943, pp. 173-220, in par-
 ticular, Part II, pp. 192-216.
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 problems of estimation in economic research, namely (1) the problem of
 confluent relations, and (2) the problem of "best estimates":

 I. The problem of confuent relations (or, the problem of arbitrary pa-
 rameters)

 If two stochastical equation systems lead to the same joint proba-
 bility law of the observable random variables, they are indistinguish-
 able (on the basis of observations). In particular, the systems might be
 such that they differ only with respect to the values of the (unknown)
 parameters involved. The problem of arbitrary coefficients is, there-
 fore, included in the following general mathematical problem: Let

 P(X1 X2 ... * XJ 81, 02,** ; Z1, Z2,*** X Zr)

 be a function of s independent variables x1, X2, . . . X, involving K un-
 known parameters 0, and r known parameters z. Let 010, 020, , 0% or,
 for short, 00, be a point in the K-dimensional parameter space of the 0's.
 Does there, or does there not, exist at least one parameter point 0'
 (5$ 00), such that

 (18.13) p(xI, Xs x 010, * * K; Z1 . . Zr)
 - P(X1Y * * * Y XsI | l OKI ***X ; Z1, ***Kzr)

 for all values of the variables x? The answer to this question depends
 upon one or more of the following things: 1. The form of the function p.
 2. The parameter point 00. 3. The values of the known parameters z.

 If (18.13) be fulfilled, and if 00 be the "true" parameter point, then,
 no matter how many observations we have of the variables x, there is
 no unique estimate to be obtained for 00, because we cannot then dis-
 tinguish between 00 and 0'. (The well-known problem of "multicolline-
 arity" is, of course, included in this formulation as a very special case
 of the arbitrary parameter problem.)6

 II. The problem of "best estimates"

 Let

 (18.14) y = p(xl, x2, * , xs 01, 02, . . X OK; Zly Z2, . . . Zr)

 be a parametric family of joint elementary probability laws of s ran-
 dom variables xi, x2, --, x,, involving K unknown parameters
 01, 02, . . . , OK. If, for given values of the known parameters z, there
 be a one-to-one correspondence between the parameter points 0 and
 the members of the K-parametric family (18.14), and if 00 be the true

 6 Cf. the discussion by Mann and Wald on the problem of whether to deal
 with the "reduced" equations or the "original" equations, op. cit., pp. 200-202.
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 92 THE PROBABILITY APPROACH IN ECONOMETRICS

 parameter point, what is the best estimate of 00 to be obtained from a
 sample point (xl, x2, x,)?

 * * *

 The problem II is-at least in point of principle-a straightforward
 problem of statistical estimation, and there is no need, nor justification,
 for a separate discussion of that statistical problem here.
 The same could, of course, also be said about problem I. It is a prob-

 lem of pure mathematics. This problem, however, is of particular
 significance in the field of econometrics, and relevant to the very con-
 struction of economic models, and besides, this particular mathematical
 problem does not seem to have attracted the interest of mathema-
 ticians. In the following sections we shall, therefore, develop some
 mathematical tools of analysis for this particular purpose.

 19. On the Reducibility of a Function with Respect to Its
 Number of Parameters

 Let

 (19.1) y = f(Xl, X2, , X,; 01, 02, . , 0)

 be a real function of s real independent (i.e., not functionally related)
 variables xi, x2, , x8, involving K parameters 01, 02, O*, . [E.g.,
 f might be the function (18.14) for fixed values of the z's.] Let 00 de-
 note a point in the K-dimensional parameter space of the 0's. And let
 S(00) be the corresponding set of all points (y, xl, x2, * * *, x.) in the
 (s+ 1)-dimensional variable space, that is to say, the set of all points
 (y, xl, x2, ... *, x) defined by (19.1) when 0= 00. Let 0' denote another
 parameter point $00, and let S(0') be the corresponding set of points
 (y, xl, x2, . , x.). If there exists at least one parameter point 0' $00,
 such that

 (19.2) S(00) = S(W),
 or-what amounts to the same-such that

 (19.3) f(xl, x2, . *, xs; 010, 020, * O 0')
 _f(Xl) X22 ... 2 Xs; 01 11 02 1.. ) OKI)

 identically, for all values of the variables x, we shall say that the pa-
 rameter point 0 has (a certain amount of) arbitrariness with respect to
 the set S(00).

 We may here distinguish between the following two cases:
 (A): There exists a finite neighborhood of the point 00 such that

 within this neighborhood there is no point 0' $00 satisfying (19.3),
 while outside, or on the border of, this neighborhood there may be one
 or more points 0' satisfying (19.3).

This content downloaded from 146.155.23.15 on Fri, 12 Jul 2019 14:00:51 UTC
All use subject to https://about.jstor.org/terms



 PROBLEMS OF ESTIMATION 93

 Example 1.
 y = 012x1.

 Here, if 01 = 010>0 there is no point 01'S 1O in the range 01> - 010 that
 satisfies (19.3), while, in the range 01? - 010, there is just one point 01'
 satisfying (19.3), namely 01' =-010.

 Example 2.

 y = 01 sin (02 + 03Xl).

 Here, if 00 be a parameter point, there are no parameter points in
 the immediate vicinity of 00 satisfying (19.3), but there is an in-
 finity of isolated parameter points 0' satisfying (19.3), namely 01'= 010,
 02'= (02+22rn), 03'= 030, n= 1, 2, 3, . . . ad inf.

 Example 3.

 y = v(0l)xi; v(e1) = (tol + 01+1)- 2[l 01-1 + (01 -1)].

 Suppose that 01?=2, then v(010) = 1. Now, if 01>2, then v(01) <1, and
 no point 01'>2 will satisfy (19.3). Next, if 2>01>0, then v(01)>1;
 therefore no points 01' such that 2>01'>0 will satisfy (19.3). But if
 01?0, then v(01)=1; hence, all points 01'<O will satisfy (19.3).

 (B): If a finite neighborhood of 00 be chosen, no matter how small,
 there are points 0' ?00 in this neighborhood, satisfying (19.3).

 Example:

 y = (01 + 02)X1 + 03X2.

 We shall now derive certain general conditions under which (A) or

 (B) will occur.
 For this purpose we consider the function f in (19.1) as a function

 of S+ K independent variables, xi, x2, * * *, Xe, 01, 02, .. . 2 OK. We as-
 sume, throughout the rest of this section, that

 (1) f is defined over a certain domain Dx of the s-dimensional x-space,
 and over a certain simply connected region De of the x-dimensional
 parameter space, and is a single-valued function for every point x e Dx
 and for every point 0 e Do.

 (2) For every point x e Dx, and for every interior point 0 of De, f has
 continuous first-order partial derivatives af/a0s (i = 1, 2, X K) (i.e.,
 continuous in the 0's).

 Definition: The function f(x1, X2, , x.; 01, 02, . . . X 0X) is said to
 be v-fold reducible (K ? > 0) at the parameter point 00, where 00 is an
 interior point of De, if there exist K - V functions ul(0i, 02, * * * X 0),
 u22(O1l 02, . . . 0 K), . . . , uK-Y(01l 02, . . . , 0X), not depending upon the
 point x, and a function f(x1, x2, * , x,; U1, u2, . . *, u,v), having the
 following properties:
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 (a) f(x1, X2, , Xs; 01l 02, . IOK) -f(x1, X22 , Xs; U1, U2, , UK-,)
 for every point x ? D., and for every point 0 in an arbitrarily small but
 finite neighborhood of 00.

 (b) auil/a0 (i= 1, 2, K-V; j=l, 2, * , K) exist and are con-
 tinuous for every point 0 within an arbitrarily small but finite neigh-
 borhood of 00.

 (c) The Jacobian matrix 9(u1, U2, U*, U 9)/O(01, 02, * *X) iS of
 rank K-V at 0= 00.

 If a function f has these properties at a parameter point 00, then,
 clearly, there exist infinitely many points 0' in the neighborhood of 00,
 such that (19.3) is satisfied, for if ul, u2, * * *, uK, be fixed, v parameters
 0 may be chosen arbitrarily in a certain neighborhood of 00 without
 changing the value of f, whatever be x e Dx.

 THEOREM 1. If a function f(x1, X2, * * * X x,; 01, 02, . . . I O,) is v-fold
 reducible at the parameter point 00, there exists a system of functions
 Xij(012 02, . . . OXc) (i= 1, 2, . , K; j= 1, 2, , V) that are independ-
 ent of the point x, and continuous in the neighborhood of 00, such that

 X11, X21, . . .

 (19.4) X12, X22, ... X2

 Xl*, X2 . . XpX

 is of rank v at 0= 00, and

 1f O9f Of
 Olj ~ X2j ae2 + ***+ Xj 88-0 ( = 1,2...V aO, 0a02 00KOI

 for all points x e D., and for all points 0 in an arbitrarily small but finite
 neighborhood of 00.

 Proof: Since the Jacobian matrix 9(u1, U2, * K*-)/(0l, 02, . . . I OK)
 is of rank K - v at 0= 00, it contains at least one (K - v)-rowed
 determinant that is not zero at 0 = 00. Since the numbering of
 the 0's is arbitrary, we may, without loss of generality, assume that
 9(U1l U2 * , UK)/1(0l, 02, . . * 0,.-,) is of rank K-V for 0= 00. Then
 the system

 u1(01, 02, . . . I OK) = Ul,

 (19.6) U2(01, 02, . . . , OK) = U2,

 UK,(0l( 6X2, . . 2 OK) = UK_t
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 has a solution

 (19.7) 0, = 4),(u1, u2, * , u,., @XP1 * , 0X)
 (19.7) Oi(i=1lyUy..yUK,yO-+l ,2,,K)

 (i = ly 2, ... ., K - V)

 which is unique in a certain finite neighborhood of 0 = 00, and such that

 aoi/oui (i = 1, 2, *..., -KV; j=1, 2, *, K-V) and O4j/O0k
 (i=1, 2, K * *, K-V; k=K-V+1, * K) exist and are continuous
 functions of ul, u2, . . *, u,,, 0,-P+l, . . ., O,, in this neighborhood.
 (This follows from the classical theory of functional determinants.)
 Hence we have

 f(Xly X22 . . . X Xs; Oly 02y . . . X 0j)

 (19.8) - f(xi, x2, , x,; 41i, 4)2, 0* '-,, - , * X )

 --f(Xl, X2, * Xs; U1l U2, . . . U-,y)

 By definition f has continuous partial derivatives af/ 90i (i = 1, 2, *, K);
 therefore, af/0ai (i= 1, 2, *...* K -v) exist and are continuous in the

 neighborhood of 00. Since also aO0/0uj (i= 1, 2, * * K- Kv;j= 1, 2, - * *
 K -v) exist and are continuous as shown above, f has continuous partial

 derivatives af/Ouj (j= 1, 2, * * *, K-V) in a certain finite neighborhood
 of 00. But when f_ f also 9f/0uj (j= 1, 2, * * , K - V) must exist and be
 continuous in the same neighborhood. We therefore have

 af _ f ul Of OuK_
 _ + . . + (9

 90 au1 0 01 au,-t, aOO

 Of af au, Of u,-,

 (19.9) 902 C U1 902 au,- ao2

 af af au, Of Ou#C,_

 a00 au1 900K au'w 900

 (19.9) can be considered as a singular linear transformation of the

 K - Vvariables 9f/Ouj (j=1, 2, * * K-V), into the K variables af/aO0
 (i= 1, 2, . . ., K), the matrix of the transformation being-by defini-
 tion-of rank K - v for 0=00, and having continuous elements in the
 vicinity of 00. But then Theorem 1 follows immediately from the theory
 of linear dependence.

 The converse of Theorem 1 may be shown, under certain weak addi-
 tional restrictions upon the X's.

 We shall now prove a theorem which gives a sufficient condition for
 the nonexistence of a relation of type (19.3) in the vicinity of a parame-
 ter point 00, namely:
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 THEOREM 2. If the functions 0f/901, 0f/902, * * *, 0f/d0k*, are linearly
 independent at the point 00, i.e., if, at the parameter point 00,

 (19.10) ; xt?-A 0
 i-1 oG0i

 whatever be the system of constants 1?, X20, - * X\, not all equal to zero,
 then there exists a finite neighborhood of the parameter point 00 such that,
 in this neighborhood, there are no parameter points 0' $00 for which (19.3)
 is satisfied.

 Proof: First, it is easy to see that the linear independence of the func-
 tions df/d0i at 0 = 00 implies that the set S(00) defined above contains at
 least K different points (y(i), x1(i), x2(), * , x,()) (j= 1, 2, . . ., K) such
 that if

 (19.11) y(j) = f(i) (j = 1, 2, . . ., K),

 be the system of equations obtained by inserting successively these K
 point in (19.1), the Jacobian

 Of(1) Of(1) of(')

 d9A, d9 2 d9 Ol

 of(2) f (2) _f(2)

 (19.12) d00 002 (00 # 0 for 0 = 00.

 df (X) ff(K) df(X)
 aoo 002 d@,

 Since also, by definition, of/la0 are continuous functions of the pa-
 rameters 0, and the x's in (19.11) are constants, it follows from the
 theory of functional determinants that the system (19.11) can- be solved
 for 01, 02, . . . *, O, and the solution is unique, and therefore equal to
 010, 020, *2* *, 0. . Within a certain finite neighborhood of the parameter
 point 00 there are no other parameter points ?00 satisfying (19.11).
 This proves Theorem 2.

 From this follows immediately

 THEOREM 3. If 0f/a01, af/902, * * . , Of/aO,, are linearly independent for
 every point 00 in the interior of De, then (19.3) is at most satisfied for pa-
 rameter points between which there is a finite distance greater than a cer-
 tain positive e.

 Thus, in most practical cases the question of arbitrary coefficients
 can be answered by investigating whether or not the partial derivatives
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 of f with respect to the 0's are linearly dependent. But for this purpose
 we need-at least in the more complicated cases-a rule that decides,
 in a finite number of steps, whether or not such linear dependence
 exists. In the next section we shall give such a rule.

 20. The Gramian Criterion for Linear Dependence of Functions
 Extended to Functions of Several Variables

 Let

 U1 = U1 (Vl, V2, Vn),

 (20.1) U2 = U2 (V1, V2, Vn),
 * . . . . . . . . . .

 Urn = Um (Vl, V2, , * V,)

 be m real functions of n > m independent real variables, vl, v2, Vn.
 Assumption: Ul, U2, * * * , Ur,m are continuous functions of the n
 variables v over a certain closed domain W in the v-space, defined by

 (20.2) as < vi a d, (i = 1, 2, ***,n)

 where ai, dY (i=1, 2, ,n) are 2n real numbers.
 Consider the expression

 (20.3) s = clU1 + c2U2 + * + cm Ur,

 where the c's do not depend upon the v's, nor the a's in (20.2). If a sys-
 tem of c's, not all zero, can be found, such that

 (20.4) s 0

 for all values of vi, V2, .. ** Vn in the domain defined by (20.2), the m
 functions (20.1) are said to be linearly dependent in W.

 Let us consider the integral

 (20.5) S = ... f s2dv1dv2* . . dvn.
 (W)

 We have

 (20.6) S 2 0.

 S is zero when and only when (20.4) is true. Therefore, if a set of c's,
 not all zero, exists for which (20.4) is satisfied, it must-at the same
 time-be such a set of c's as makes S a minimum and equal to zero. And,
 conversely, if there is a set of c's, not all zero, such that S =0, then
 (20.4) is fulfilled. The problem of linear dependence is, therefore, re-
 duced to a study of the minimum of S with respect to the c's.
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 98 THE PROBABILITY APPROACH IN ECONOMETRICS

 Since not all c's should be zero, we may assume that

 (20.7) S 2 = 1.

 We have to find the minimum of S under the side condition (20.7), or,
 what amounts to the same, to find the unrestricted minimum of

 m
 (20.8) S' = S - XE c 2,

 i*1

 where X is a Lagrange multiplier. Let us introduce the following nota-
 tions

 (20.9) M,j = ... f UiUj(dvdv2 . . dvu)
 (W)

 (i =1, 2, ... ,m; j=1,2,* ,m).

 A set of c's minimizing (20.8) must satisfy the following system of lin-
 ear equations

 (Mll - X)c1 + M12c2 + .* + Mimcm = 0,

 (20.10) + (M22 - X)c2 + + M2mCm = 0,

 Mmici + Mm2C2 + . . . + (Mmm - X)Cm = 0.

 (20.10) has a solution of c's not all zero when and only when the de-
 terminant formed by the coefficients of the c's is equal to zero, i.e.,

 (Mii - X) M12 . .. Mim

 (20.11) M21 (M22-X) * M2m =0.

 Mml Mm2 ... (Mmm - X)

 Now S is a positive (semi) definite symmetric quadratic form. There-
 fore, all X-roots of (20.11) are nonnegative. S has, therefore, a mini-
 mum = 0, for other values of the c's than all zeros, when and only when
 the minimal X-root of (20.11) is equal to zero. A necessary and sufficient
 condition for the linear dependence of the m functions (20.1) is, therefore,
 that

 (20.12) | Mij| = 0,
 where I MqJ is the determinant (20.11) for X=0.

This content downloaded from 146.155.23.15 on Fri, 12 Jul 2019 14:00:51 UTC
All use subject to https://about.jstor.org/terms



 PROBLEMS OF ESTIMATION 99

 21. An Illustration of the Problems of Estimation

 We shall consider a simple linear supply-demand scheme, including
 certain random elements and an autonomously imposed sales tax.

 Let {lt(D) be the quantity demanded at point of time t, {lt(3) the
 quantity supplied, t2t the price per unit sold, and t3t a sales tax per unit
 sold, fixed for each point of time independent of the quantity sold. Con-
 sider these variables at N equidistant points of time t =1, 2, , N.
 We shall assume it known that these variables satisfy the following
 system of random equations:

 (21.1) 6t1(D) = 1l2t + Elt (t = 1, 2, , N),

 i.e., a linear demand curve with random shifts elt;

 (21.2) it(1 ) a2(62t - 3t) + E2t (t = 1,2, * ... , N)
 i.e., the supply is a linear function of (price minus tax) and a random
 shift 62t. Further, we impose the market relation

 (21.3) 6t(D) = tit(S) = (lt = quantity sold at t.

 We assume known the following properties of the 2N random varia-
 bles eii, el2, . . ., ElN, C21, E22, . . ., 62N: (a) They are independently and
 normally distributed and (b) their distribution does not depend upon

 t3t. (C) All the N random variables el,, t =1, 2, * * , N, have the same
 mean ii and the same variance ao2; likewise, all the N random variables
 E2t, t= 1, 2, *.* , N, have the same mean i2 and the same variance 122.

 Further, we assume that there are errors of measurement in the ob-

 servations of the quantity sold, lti, such that, instead of lti, we observe

 (21.4) xit = tit + -lt (t = 1, 2, . .. , N),

 while the price t2t and the tax t3t are observed without errors, i.e.,

 (21.5) X2t = 42t, X3t = t3t (t =1,2, * ... , N).

 We assume that the N random variables 7111, 12, . . ., 1N, are inde-
 pendently normally distributed with zero means and the same vari-

 ance a2, and that their distribution does not depend upon the t's nor
 the e's.

 The N numbers 631, t32*, t3N, are assumed to remain fixed in
 repeated samples.

 Because of (21.3), both lti and t2t will be random variables. Indeed,
 from (21.3), (21.1), and (21.2) we obtain (provided al$;a2)

 ala2 a2Elt - alf2t

 tlt = 3t +-

 (21.6) a2-al a2-al
 a2 EI t - E2 t

 t2t = +
 a2-al a2-al
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 which shows that both tit and t2t are functions of the two independent
 random variables elt and E2t-

 If we could make experiments to study, separately, the demand func-
 tion (21.1) and the supply function (21.2), we could reason in this way:
 (1) For a given value of t2t , t(D) is a random variable with expected
 value equal to ai(t2t+ i. (2) For given values of t2t and 63t, (it () is a
 random variable with expected value equal to a2(62t- 3t) + ?2. And we
 could "fit each of the equations (21.1) and (21.2) separately" to the
 respective data obtained by the two series of experiments. But in our
 case, because of the market relation (21.3), we cannot assume 42t to
 remain fixed in repeated samples. That would simply be inconsistent
 with the original assumption that the errors E1 and E2 are independent.
 To realize clearly all the implications of our scheme we have to consider
 the joint probability distribution of the observed variables x1t and x2 ,
 given x3t, t= 1, 2, - - *, N.

 Introducing (21.4) and (21.5) in (21.1) and (21.2), we obtain

 (21.1') XIt = ClX2t + Elt + 7l7t,

 (21.2') Xit = a2(X2t - X3t) + E2t + flit,

 or
 ala2 aC2Et - ac2

 Xlt = X3t + + flit,

 (21.6') a2 - a1 a2 - ai
 Cft2 1lt - E2t

 X2t = - X3t + -
 aZ2-al a2-al

 xit and X2t are jointly normally distributed, because they are linear
 functions of the normally distributed variables elt, E2t, 7lit. We therefore
 have, for any fixed point of time t,

 1 1 -x(Xltit) 2
 pt(XIt, X2t X3t) = 1 exp 2F

 2p (xit- Xlt) (X2t -X2t) (X2 t- -2 ) 2 )

 2IA2 V2 -p2

 where ,s12, A22 are the variances of xit and X2t respectively, -, at their
 mean values, and p their correlation coefficient, x3t being given. From
 (21.6') we obtain

 (21.8) h t = 2 X3t 2- - al2
 a2 - al 2 -Ci

 (21.9) X2t = X3t + - - 2
 a2 - a, Ct2 - Ci
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 1

 (21.10) l= x-2 = =- (a2 = (a22of12 + al2022) + a2 (a2 - l
 1

 (21.11) $22 = E(x2t - X2t)2 = a (12 + 022)
 (a2 - al)2

 1 a2cTl2 + ai0T22
 (21.12) p = E(xit - Xlt)(X2t - X2g) =

 A1A2 (a2 - al) t142

 This shows that only the averages xti and X2V depend upon t, while the
 other parameters are independent of t.
 Since the random variables xit, x2t for one value of t are distributed

 independently of those at another value of t, the joint distribution of
 the 2N variables xi,, Xl2, . ., XlN, X21, X22, * * *, X2N, is

 (21.13) p(x11, * * * , XlN, X21, * , X2N) = Hpt (t = 1,2, 2 , N).

 Let us introduce new parameters by the transformations

 ala2

 (21.14) a,= -
 a2 - al

 a261 - al2
 (21.15) a2 =

 a2 - a,

 (21.16) bl = a2
 a2 - al

 (21.17) b2 - 62
 a2 - al

 Then (21.8) and (21.9) become

 (21.8') x=t alX39 + a2,
 (21.9') X2t blX3t + b2.

 Introducing (21.7) in (21.13), and using (21.8') and (21.9'), we obtain
 (21.18) p = CeQ,
 where

 1 F(x1t -alX3t- a2)2

 2p(xlt-alX3t-a2) (X2t- blX3t- b2) (X2t- blX3t- b2)21 _+ -,
 p1112 122 _

 and $

 (21.20) C=
 (2711112) N(1 - p2)N/2

 means, throughout this section, ?EN).
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 The distribution (21.18) is, therefore, characterized by 7 unknown

 parameters, namely a,, a2, bi, b2, All, 2, p. If there exists a unique esti-
 mate of these 7 parameters, the question of uniqueness of the original
 parameters depends only upon the transformations (21.10)-(21.12) and
 (21.14)-(21.17). Now it is easy to see that these transformations estab-
 lish a one-to-one correspondence between the old and the new parame-
 ters over the whole parameter space, except for a trivial set of measure

 zero (namely a1 =0, or a2 =0, or ai = a2). We therefore have to investi-
 gate the uniqueness of the parameters in (21.18). This can be done by
 means of the theorems in Section 19.

 The partial derivatives of p [in (21.18)] with respect to the parame-
 ters are

 Op OQ Op OQ
 -= CeQ-, - = CeQ-,

 oa1 oa1 Oa2 Oa2

 op ~ OQ Op OQ
 -= CeQ-. - = CeQ-}

 (21.21) Ob, Ob, 012 0b2
 Op /OG OQ Op aOG OQ
 -= eQ (-+ C) =eQ -+ C),
 oill aAl aill 0s2 i.2 0s2

 -= eQ(+ C-)
 Op OGp OP

 According to Section 19 we are interested in whether these 7 partial
 derivatives are linearly dependent. If that should be the case, there

 would have to exist 7 X's, Xl, X2, . . ., X7, which are independent of the
 variables x, not all zero at the same time, and such that

 OQ OQ OQ OQ (OC aQ) XlC Q+X2C Q+X3C Q+X4C Q+X5 C+C c Q
 0a1 0a2 0b1 0b2 ky O 8ti Os

 (21.22) OC OQ (OC OQ

 a\-c aQ )7(ac + a Q)e
 O2u2 Og p Ol p

 for all values of the variables x. Since we do not know the true parame-
 ter values we are interested in whether there is any parameter point
 at all for which (21.22) is fulfilled.

 From (21.19) and (21.20) we see that the left-hand side of (21.22)
 will be a second-degree polynomial in the variables x. (21.22) can be
 fulfilled only if the coefficients of equal terms in this polynomial vanish
 separately. Using this we verify easily that all the 7 X's must be equal
 to zero, whatever be the true parameter point (except p = ? 1, which is
 trivial), provided among the set of N constants x31, x32, . . ., X3N, there
 are at least two that are different.
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 PROBLEMS OF ESTIMATION 103

 All the 7 parameters of (21.18) can, therefore, in general be esti-
 mated.

 We shall consider, in particular, the maximum-likelihood estimates7 of
 the parameters in (21.18), i.e., the parameter values obtained by setting
 each of the 7 derivatives in (21.21) equal to zero and solving this system
 of 7 equations. We obtain the following equations defining the maxi-
 mum-likelihood estimates (which we denote by d1, 62, etc.):

 (21.23) E (Xit - 6iX3t - 62) = 0,

 (21.24) E (X2t - b1x3t - b2) = 0,
 (21.25) Z (Xit - aiX3t - 42)X3t = 0,

 (21.26) (Xt- b1X3t - b2)x3t = 0,

 (21.27) N^12 - Z (Xlt - 61X3t - 62)2 = 0,

 (21.28) N -22 Z (X2t - 'lbX3t - b2)2 = 0,

 )j (Xit -alX3t - 62)(X2t - blX3t - b2)
 (21.29) Nk ^ 0.

 It is easy to verify that this system has, in general, a unique solution
 with respect to the 7 parameters a,, a2, . . . etc. For example, from the
 first 4 of these equations we obtain

 (21.30) d1 M13 - M1Mm3
 M33 -M32

 ^ M23 M2M
 (21.31) bi= 2m

 M33 -M32

 where
 1 1

 (21.32) mij= Xitxjt, mi = E xit.
 N N

 These are the same results as we should obtain by writing the "con-
 fluent" relations (21.6') in the form

 (21.6") Xit = aiX3t + a2 + error, X2t = b1x3t + b2 + error,

 7 The method of maximum likelihood, commonly used by statisticians, was
 originally founded more or less upon intuition, but recently it has been shown by
 A. Wald that the method, under certain conditions, can be justified on the basis
 of modern theory of confidence intervals. See his articles, "A New Foundation
 of the Method of Maximum Likelihood in Statistical Theory," Cowles Commis-
 sion for Research in Economics, Report of Sixth Annual Research Conference on
 Economics and Statistics ... 1940, pp. 33-35, and "Asymptotically Most Power-
 ful Tests of Statistical Hypotheses," Annals of Mathematical Statistics, Vol. 12,
 March, 1941, pp. 1-19.
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 104 THE PROBABILITY APPROACH IN ECONOMETRICS

 and fitting each of these equations to the data by the method of least

 squares, treating xit and X2t, respectively, as the dependent variable.
 This would, therefore, also be a correct procedure. But the results
 (21.30), (21.31) are not the same as those we should obtain by fitting
 the two original equations (21.1') and (21.2') separately, treating xit as
 dependent variable in both equations. For example, from (21.14),
 (21.16), (21.30), and (21.31) we obtain

 41 M3- mlm3
 (21.33) 1 = b1= 2

 bi M23- M2M3

 while, if we should fit (21.1') directly by the method of least squares,
 we should obtain

 (21.34) al* = M12 - mlm2
 M22 - M 22

 which is obviously different from (21.33) since (21.34) does not depend
 directly upon x3t, while (21.33) does.

 a,* in (21.34) is simply not an estimate of al, but something else.
 The point is this: Consider the equation (21.1'). From this equation we

 have E(x1tI X2t) =alx2t+E(eltl X2t). (21.34) would have been an estimate
 of al if E(e1lI X2t) had been independent of X2t and x3t. But that is not
 the case here. And, therefore, the assumption upon which the least-

 squares "estimate" (21.34) is based, namely that E(xltIX2t)=alX2
 +constant, is here simply wrong. In fact, from the joint distribution
 (21.18) of xit and X2t, and the transformations (21.10)-(21.12) and
 (21.14)-(21.17) we obtain easily that E(x1lf X2t) is a linear function of
 X2t and X3t, namely

 a2(T12 + al(T22 a20f12

 (21.35) E(x1t I X2t) = 2 + 2 X2t 2 X3t + const.
 0i2 4 022 0i 4 022

 If we want to predict Xit, given X2t and x3:, this formula (21.35) is
 the one to be used. For that purpose we may, if we like, write (21.35)

 as E(xlt I X2t) = Ax2t+Bx3t+C, and fit this equation directly to the data
 by the method of least squares. That gives the same result as if we first
 estimate all the coefficients in (21.35) by the method of maximum like-
 lihood as described above, and then insert these estimates in (21.35).

 Thus, we see that the method of least squares applied to the original
 equations (21.1') and (21.2') separately, neither gives correct estima-
 tion formulae for the coefficients, nor does it give the correct formulae
 for prediction. This shows the importance of studying the joint dis-
 tribution of all the observable random variables in a system of sto-

 chastic relations.

This content downloaded from 146.155.23.15 on Fri, 12 Jul 2019 14:00:51 UTC
All use subject to https://about.jstor.org/terms



 CHAPTER VI

 PROBLEMS OF PREDICTION

 A statistical prediction means simply a (probability) statement about
 the location of a sample point not yet observed. If we consider n ran-

 dom variables, say xi, x2, - * *, x", and if we know their joint probabil-
 ity law we may, at least in point of principle, calculate the probability

 of a sample point (xl, x2, * * *, x,n) falling into any given region or point-
 set of the sample space, or we may prescribe a certain fixed probability
 level and derive a system of regions (or point-sets) which have this
 probability. In practice we should then usually be interested in that
 region which, at a given probability level, is the "smallest" (in some
 sense or another). Thus, if we actually knew the joint probability
 law of the variables to be predicted, the problem of deriving a predic-
 tion formula having certain desired properties would merely be one of
 probability calculus. And the question of choosing a "best" prediction
 formula would, largely, be a subjective matter, that is, a question of the
 type of "gambling" we should be willing to accept.

 Usually, however, we do not know the probability law of the varia-
 bles to be predicted. Then the problem of prediction becomes one
 closely connected with the problems of testing hypotheses and estima-
 tion. For we then have to draw inference concerning the probability
 law of the variables to be predicted from samples already observed.

 We shall attempt to give a more general and rigorous formulation of
 these problems.

 22. General Formulation of the Problem of Prediction

 Consider n sequences or time series of random variables xit
 (i= 1, 2, ... , n) observable from t= 1 on. Values, if any, of the varia-
 bles prior to t = 1 we shall here consider as given constants. Suppose
 that we can observe values of each series up to a certain point of time.

 Let t = si be this point of time for the ith series. And suppose that the
 problem is to predict the results of later observations not yet made.

 We then have the following schedule of random variables to be con-
 sidered.

 (22.1) Xt = xi.1, xi2, . . *, Xixs8iXi, Xi+l xi,8i+2, ...
 (i = 1, 2, ...* n).

 Xl.t, X2,t, * ..., Xn t, may for example be n related economic time se-
 ries, t-si denoting the latest point of time for which an observation

 of xi t is, so far, available. We might want to predict the next value

 - 105
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 106 THE PROBABILITY APPROACH IN ECONOMETRICS

 in one or more of the series, or the second next, or both, or any other
 joint system of future values of the variables not yet observed. Con-

 sider any system of M variables chosen among the variables xi, i+?
 (i=1,2, * , n; T= 1,2,3, ). Together with the s1+s2+ +Sn
 =N observed variables the variables to be predicted form a system of
 N+M random variables. Let us, for simplicity, change notations of

 these variables, denoting the N observable variables by xi, X2, ... , XN,
 and the M variables to be predicted by XN+1, XN+2, * , XN+M, SO
 that there is a one-to-one correspondence between these variables and

 the N+M variables xi,t considered.
 The problem of prediction is then the problem of establishing cer-

 tain functions of the observable variables x1, X2, , XN, that may
 be used as guess values for the outcome of the future observations of

 XN+1, XN+2, * , XN+M.
 We shall assume that, whatever be si, 82, , s-, and whatever be

 the set of M future variables considered, the joint elementary probabil-

 ity law of the N+M variables xi, X2, - X- , xNx+i, * * XN+M exists.
 (But it might not be-and usually is not-known.) Let this joint proba-

 bility be denoted by p(x1, X2, * * *, XN, XN+1, * * *, XN+M), or, for short,
 p. This probability law would usually be described implicitly by a sys-

 tem of stochastical relations between the variables considered, as ex-
 plained in Chapters IV and V.

 Let us for a moment suppose that p is known. From p we might then
 calculate the conditional elementary probability law of the M variables

 XN+1, ... , XN+M, given the N variables x1, X2, , . XN. Let this condi-
 tional probability law be denoted by P2(XN+1, * , XN+M I X1, X2, ., XN),
 or for short, P2. Let pi(xi, X2, , XN), or for short, pi, denote the
 joint probability law of the N observable variables. We may then write

 (22.2) p = Pr P2.

 Let, further, E1 denote any particular system of values-one for each-
 of the observable variables x1, X2, -, XN; and, similarly, let E2

 denote any system of values of the future variables XN+1, * * *, XN+M.
 Any E1 may be represented by a point in the N-dimensional sample

 space R1 of the variables xi, X2, , xN; and, similarly, any E2 may be
 represented by a point in the M-dimensional sample space R2 of the
 variables XN+1, - * *, XN+M to be predicted. Finally, let E denote a point
 in the sample space R of all N+M variables.

 Now, given any particular E1, we may from P2 calculate the condi-
 tional probability of E2 falling into a prescribed point-set of the sample
 space R2. This probability would usually be a function of E1. Also,

 1 See, e.g., Harold Hotelling, "Problems of Predictions," The American Journai
 of Sociology, Vol. 48, July, 1942, pp. 61-76.
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 PROBLEMS OF PREDICTION 107

 for any given E1 and for any given level of probability, ,B say, we may
 derive a system of point-sets or regions in R2, such that the probability
 of E2 falling into any particular one of these sets is ,3. That is, we may
 predict, with probability= 3 of being correct, that E2 will fall into any
 particular one among these point-sets. Any such point-set in R2 we
 shall call a region of prediction, and we shall denote such a region by W2.
 In general, however, not all the regions W2 of probability ,3 are

 equally "interesting." Usually (though not always) we are interested
 in that region, with probability ,B, which is the "narrowest," in some
 sense or another. Or, we might also be interested in predicting that the
 sample point E2 will not fall within a certain region. In any case the
 choice of the probability level ,B and of the location of that region W2,
 with probability ,B, which we want to use as a prediction formula will
 depend on the practical use we want to make of it. This choice is not a
 statistical problem. We shall simply assume that, whatever be the con-
 ditional probability law P2, the purpose of our attempts to predict will
 lead us to one and only one region W2 of predicting E2, for every set of
 values of the "predictors" xl, X2, . . ., XN.
 If, therefore, we knew P2 the problem of prediction would merely be

 a problem of probability calculus, and not one of statistical inference
 from a sample. But in most practical cases P2 is not known, and we then
 have to try to get information about P2 from samples E1 of the previous
 observations. The possibility of doing so rests upon a basic assumption,
 which can be formulated as follows: The probability law p of the N+M
 variables x1, X2, *. *, XN, XN+1l . . *, XN+Mis of such a type that the speci-
 fication of pi implies the complete specification of p and, therefore, of P2.
 For instance, if p is characterized by a certain number of unknown

 parameters, then all these parameters must also be the characteristics
 of pi so that P2 will contain no new parameters in addition to those
 occurring in pi. This is only another, more precise, way of stating that,
 in order to be able to predict there must be a certain persistence in the
 type of mechanism that produces the series to be predicted.
 Suppose now that the only thing known about Pi is that it belongs

 to a certain specified class i1 of elementary probability laws, and that,
 therefore, P2 belongs to a certain corresponding class Q2. Let pi* denote
 any arbitrary member of Q2. And let Wl(pi*) be a critical region, of
 size (1- a), in R1, chosen according to some rule, such that the hy-
 pothesis pi =pl* is rejected when and only when E1 falls into Wl(pl*).
 Let there be established a system of such critical regions in R1, one for
 every member p1* of Q2. If El falls outside Wi(pi*) then Pi= p* is not
 rejected. If the system of regions Wl(pl*) is not to be trivial, any sample
 point E1 will fall outside some of the regions Wl(pl*). E1 being an arbi-
 trary sample point of the N observable variables, let w(El) be the sub-
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 108 THE PROBABILITY APPROACH IN ECONOMETRICS

 set of Q1 in whose critical regions [of size (1--a)] E1 does not fall. As
 explained in Section 14 it then seems reasonable to estimate the un-

 known probability law pi on the basis of E1 by stating that pi e cw(El).
 Now, we have assumed above that, for every member pi* of Qi? (or-
 what is the same-for every P2* of Q2) and for every set of values of
 X1, X2, ... , XN, our choice of prediction formula leads to one and only
 one region of prediction W2*, of size 3. To the subclass w(El) there
 therefore corresponds a certain subclass of such regions of prediction.

 Let K(El) be the (logical) sum of all the elements W2* of this subclass.
 It might then seem reasonable to predict E2, on the basis of the sample
 point E1, by stating that

 (22.3) E2 will fall into K(E1).

 What is the probability of this statement being true? Let
 g [K| pi cE w(El) ], or, for short, g(K) be the probability of E2 falling

 into K when pi ? c(E1). And let g{KIp1 c [%1-co(El)]}, or, for short,
 g(K), be the probability of E2 falling into K when pi is outside W(El).
 The probability, P(E2 c K), of (22.3) being true is then evidently

 (22.4) P(E2eK) = ag(K) + (1 -a)g(K),

 i.e., the probability of (22.3) being true is the probability of W(E1)

 covering pi times the probability that E2 then falls into K plus the
 probability that co(El) does not cover pi times the probability that E2
 then falls into K. Now, the probabilities g(K) and g(K) will, in general,
 be functions of the true distribution pi. But we may give inequalities
 for P(E2 e K). Evidently 1 g(K) A, while 0 < g(K) < 1. Therefore,

 (22.5) 1 > P(E2 EK) > a3.

 (For particular Q1's there might exist narrower limits.)
 The procedure just described might also be looked upon in the follow-

 ing way: We have assumed that to every member pi* of Q? there is a
 certain region of prediction W2* which we should use if pi* were the
 true distribution. If pi* is the true distribution the probability that
 K(E1) shall cover the corresponding region of prediction is evidently
 equal to a. Therefore, K(E1) may be considered as a confidence region,
 with confidence coefficient a, for estimating the location of the "ideal"
 region of prediction W2 corresponding to the true hypothesis.

 The usual problem in practice is, however, to derive regions of predic-
 tion for E2 which, with a given probability level, are as "small" as
 possible. Then the regions K derived as described above might not nec-
 essarily be the "best" regions to choose. More precisely, if for a given ,B
 the regions W2* were the "smallest" regions (according to some meas-

 ure), and if the confidence sets w(El) were the "smallest" confidence
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 PROBLEMS OF PREDICTION 109

 sets, the question of whether or not the corresponding K(E1), measured
 in the same measure as the regions W2* would be the "smallest" re-
 gion of prediction would depend on the way in which the term "small-
 est" is defined with respect to co(Ej). Or, expressed in simpler terms,
 the choice of a particular system of confidence sets for estimating pi
 depends on some system of weights of the type of errors that might be
 committed by stating that w(Ei) will cover pi. If, on the other hand,
 the purpose is to derive a region of prediction K(E1), a different weight-
 ing of the errors of estimate might be necessary in order to arrive at
 the desired weighting of the possible errors of prediction.

 We see therefore that the seemingly logical "two-step" procedure of
 first estimating the unknown distribution of the variables to be pre-
 dicted and then using this estimate to derive a prediction formula for
 the variables may not be very efficient. We shall discuss a simpler and
 more direct method of deriving prediction formulae that avoids the
 difficulties discussed above.

 Let E2 denote any point in the sample space R2 Of XN+1, ,XN+M,
 and let W2 denote a point in R2 to be used as a prediction of E2. We con-
 sider the problem of defining E2 as a function of x1, x2, ,XN, in such
 a way that the probability will be high that F2 will be close to E2 (in
 some sense or another). We shall call E2 a prediction function. If we
 state that E2 will coincide with E2 and this does not occur, we commit
 an error the consequences of which will depend on the purpose of the
 prediction. Using an idea of A. Wald2 we might assign a system of
 weights to the various possible errors. Let this system be defined by
 a weight function Q(E2, E2), such that Q = 0 if E2 = E2 and Q 0 (and
 not identically zero) for all points E26 E2. Q might be considered as the
 "loss" incurred if E2A E2. The expected value r of this loss, in repeated
 samples, is given by

 (22.6) r = fQ(E2, T2)pdEiy

 the integral being taken over the whole sample space R of the N+M
 variables x1, x2, * * *, XN, XN+1, ., Xy+M. We have to choose E2 as
 a function of x1, X2, * * *, XN, and we should, naturally, try to choose

 W2(xi, x2; * * *,XN) in such a way that r (the "risk") becomes as small
 as possible.

 Suppose there should exist a prediction function E2(x1, X2, . . *, XN)
 depending on X1, X2, - * *, XNonly, such that for this particular function
 r would be at a minimum, independently of what be the true distribu-

 2 See A. Wald, "Contributions to the Theory of Statistical Estimation and
 Testing Hypotheses," Annals of Mathematical Statistics, Vol. 10, December, 1939,
 pp. 299-326.
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 tion pi (within Q1). Then we should naturally choose this function at
 the best prediction relative to the given weight-function Q. We might
 call such a prediction function "uniformly best (within i1) relative to
 the given weight function."

 In a few simple cases such prediction functions might exist. In gen-
 eral, however, we may expect that no uniformly best prediction func-
 tion exists. Then we have to introduce some additional principles in

 order to choose a prediction function. We may then, first, obviously
 disregard all those prediction functions that are such that there exists

 another prediction function that makes r smaller for every member of Q1.
 If this is not the case we call the prediction function considered an
 admissible prediction function. To choose between several admissible
 prediction functions we might adopt the following principle, introduced

 by Wald: For every admissible prediction function E2 the "risk"' r is
 a function of the true distribution p. Consider that prediction func-

 tion E2, among the admissible ones, for which the largest value of r
 is at a minimum (i.e., smaller than or at most equal to the largest value

 of r for any other admissible E2). Such a prediction function, if it exists,
 may be said to be the least risky among the admissible prediction func-
 tions. The problem of deriving such prediction functions is closely re-
 lated to the similar problem of deriving best estimates.'

 23. Some Practical Suggestions for the Derivation of
 Prediction Formulae

 From the discussion just concluded it is seen that the choice of a
 prediction formula cannot, in general, be made entirely on objective

 grounds. The choice of the weight function Q, for instance, is not an

 objective statistical problem. Also, the choice of a prediction formula
 when no uniformly best prediction formula exists is a more or less
 subjective matter. The advantage of the formal procedure we have out-
 lined is, however, that it describes precisely where and how the subjec-
 tive elements come into the picture, and what their logical consequences
 are. The apparatus described gives us more efficient tools for forming
 the prediction functions according to our wish. Thus, for instance, the
 notion of a weight function Q is useful in the sense that, if we should
 choose a prediction functon more or less arbitrarily (by a freehand
 method, let us say), the corresponding weight function that would
 make this arbitrary choice the "best" might be such that we would
 not accept it. That is, we should realize that the arbitrarily chosen
 prediction function was not very good after all.

 I For a discussion of the problems of prediction within a model of linear sto-
 chastic difference equations see Mann and Wald op. cit., pp. 192-202.
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 A practical rule, perhaps not generally recognized, in dealing with
 several time sequences simultaneously is the following: If we want to
 predict future values for one or more of the sequences it is usually
 necessary to derive the prediction formulae on the basis of the joint
 distribution of the observable elements in all the series. That is, we have
 to take into account, not only the serial, stochastical, dependence be-
 tween successive observations in one and the same sequence, but also
 the interdependence, if any, between the various sequences considered.
 The situation is here similar to the situation in regard to estimation of
 unknown parameters, as discussed in Chapter V.4

 The apparatus set up in the preceding section, although simple in
 principle, will in general involve considerable mathematical problems
 and heavy algebra. There are, however, important cases where more
 simple procedures will be sufficient. We should like to suggest one such
 procedure that might be applied with success in certain ordinary cases
 occurring frequently in econometrics and other types of statistical re-
 search.

 Suppose we have a case where the following assumptions are fulfilled
 (using here the notations of Section 22):

 1. The distribution pi of xi, X2, *.* . . XN is known to belong to a
 parametric family of distributions, involving the unknown parame-
 ters al, a2, * , ak, i.e., we may write pi=pi(xi, X2, . . ., XN;
 al, a2, a k), or, for short, pi [El; (a)].

 2. The distribution p of all the N+M variables considered is ob-
 tained simply by substituting N+M for N in pi, N and M being arbi-
 trary positive integers (except, perhaps, that N may have to be larger
 than a certain positive integer, say No). P2 is, therefore, also known,
 except for the values of the parameters a.

 3. It is established that the maximum-likelihood estimates of the a's
 derived from pi [El; (a<)] for an observed sample E1 are unbiased and
 converge stochastically to the true parameter values with increasing N,
 and that these estimates are "good" estimates also for moderate size
 of N.

 Consider the "conditional risk" f defined by

 (23.1) = f Q(E2, E2) p2[E2; (a) I E1] dE2.
 R2

 For fixed E1 we may consider f as a function of E2. We might then pro-
 ceed as follows, to derive the prediction function E2 = E2(Xl, X2, ... , XN):

 4For further discussion of this particular problem see the author's article,
 "Statistical Implications of a System of Simultaneous Equations," ECONOMET-
 RICA, Vol. 11, January, 1943, pp. 1-12. See also the discussion by H. B. Mann
 and A. Wald, op. cit., pp. 215-216.
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 I. Find that point E2 which, for a given set of a's and a given sample
 of Xl, X2, . . *, XN, makes r a minimum (assuming that such a minimum
 exists). The point E2 corresponding to this minimum of r will, in gen-
 eral, be a function of the a's and the observable variables xi, x2, , XN.
 Denoting this function by E2 we may therefore write

 E2 = E2(xl, x2, *, XN; il, a2, . , ak).

 II. In the function E2 insert for the a's their maximum-likelihood es-
 timates ak, a2, , *, , as derived from the observations xi, X2,* ,XN
 and the distribution pi. The resulting prediction formula E2 =E2(xl, X2,

 * XN; al, a2, **, k) then contains only known elements and is,
 therefore, determined.

 This procedure can be shown to lead to the same prediction formulae,
 in certain ordinary cases, as those which are already established as
 "best" on the basis of the general theory of statistical estimation. We
 shall give an example.

 Consider a sequence of random variables defined by the recurrence
 formula

 (23.2) Xt = kxt-1 + et (t = 1, 2, ...

 where xo is a given constant, while k is an unknown constant, and where
 the c's are independently, normally distributed with means equal to
 zero, and the same variances, equal to Ur2. Suppose we have observed xt

 up to and including XN and we want to predict XN+1 and XN+2. Assume
 further that we have chosen a weight function of the following type:

 (23.3) Q = a(XN+2 - XN+2) 2 + 2b(xN+2 - xN+2)(XN+l - XN+l)
 + C(XN+l - XN+l) 2

 where XN+l and xN+2 denote the predicted values of XN+1 and XN+2, and
 where a>O, b, and c are certain known constants, such that ac>b2.
 (That is, the weight of an error in prediction is constant along an ellipse,
 with center at ?N+1, xN+2.)

 The joint distribution of xN+1 and XN+2, given the preceding x's, is

 (23.4) P2 = -(1/22)

 where

 (23.5) Y = (XN+1 - kxN) 2 + (XN+2 - kxN+1)2.

 The conditional expectation of Q is then [see (23.1)],

 (23.6) = f + Qe (1/22) ydxN+idxN+2.
 00 27r(T2
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 Minimizing f with respect to xN+l and tN+2 we obtain the following two
 equations for XN+1 and xtN+2,

 (23 . 7) aXN+2 + bxN+, ak2XN + bkxN,
 bXN+2 + CXN+l = bk2XN + CkXN,

 which give

 (23.8) xN+l = kxN,
 XN+2 = k2XN

 independently of the values of a, b, and c. That is, the "best" prediction
 values relative to the weight function (23.3) are the expected values of

 XN+i and XV+2. But we do not know k. Its maximum-likelihood estimate
 i is, however,

 N

 E Xtxt-i
 (23.9) = t=1

 N

 2d Xt-1 2
 t=l

 Our prediction formulae are therefore, according to the principle
 adopted,

 (23.10) XN+1 = X?XN,
 XN+2 -=2XN

 To judge the reliability of the prediction we may, e.g., consider the

 probability of (xv+1- xN?+) and (XN+2 - xN+2) being within certain
 bounds, the variables XN+1 and tN+2 being defined by (23.9) and (23.10);
 or, we could simply study the values of the risk, as calculated from
 (22.6).
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 CONCLUSION

 The patient reader, now at the end of our analysis, might well be
 left with the feeling that the approach we have outlined, although

 simple in point of principle, in most cases would involve a tremendous
 amount of work. He might remark, sarcastically, that "it would take
 him a lifetime to obtain one single demand elasticity." And he might

 be inclined to wonder: Is it worth while? Can we not get along, for
 practical purposes, by the usual short-cut methods, by graphical curve-
 fitting, or by making fair guesses combining our general experiences

 with the inference that appears "reasonable" from the particular data
 at hand?

 It would be arrogant and, indeed, unjustified to condemn all the
 short-cut methods and the practical guesswork which thousands of
 economists rely upon in their daily work as administrators or as ad-

 visers to those who run our economy. In fact, what we have attempted
 to show is that this kind of inference actually is based, implicitly and
 perhaps subconsciously, upon the same principles as those we have
 tried to describe with more precision in our analysis. We do, however,
 believe that economists might get more useful and reliable information
 (and also fewer spurious results) out of their data by adopting more
 clearly formulated probability models; and that such formulation might
 help in suggesting what data to look for and how to collect them. We
 should like to go further. We believe that, if economics is to establish
 itself as a reputable quantitative science, many economists will have
 to revise their ideas as to the level of statistical theory and technique

 and the amount of tedious work that will be required, even for modest
 projects of research. On the other side we must count the time and work

 that might be saved by eliminating a good deal of planless and futile
 juggling with figures. Also, it is hoped that expert statisticians, once
 they can be persuaded to take more interest in the particular statistical
 problems related to econometrics, will be able to work out, explicitly,
 many standard formulae and tables. One of the aims of the preceding
 analysis has been to indicate the kind of language that we believe the
 economist should adopt in order to make his problems clear to statis-

 ticians. No doubt the statisticians will then be able to do their job.
 In other quantitative sciences the discovery of "laws," even in highly

 specialized fields, has moved from the private study into huge scientific
 laboratories where scores of experts are engaged, not only in carrying
 out actual measurements, but also in working out, with painstaking
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 CONCLUSION 115

 precision, the formulae to be tested and the plans for the crucial experi-
 ments to be made. Should we expect less in economic research, if its
 results are to be the basis for economic policy upon which might depend
 billions of dollars of national income and the general economic welfare
 of millions of people?
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