
Theoretical Economics 10 (2015), 543–595 1555-7561/20150543

A theory of school-choice lotteries

Onur Kesten
Tepper School of Business, Carnegie Mellon University

M. Utku Ünver
Department of Economics, Boston College

We introduce a new notion of ex ante stability (or fairness) that would be desirable
for a school-choice mechanism to satisfy. Our criterion stipulates that a mecha-
nism must be stable based solely on the probabilities that each student will be
assigned to different schools, i.e., the assignment must be viewed as stable even
before students know which school they will end up going to. This is in contrast
to much of the existing literature, which has instead focused on ex post stabil-
ity, meaning that assignments are deemed stable after students are assigned to
schools. Armed with this criterion for evaluating mechanisms, we show that one
of the mechanisms that has attracted the most attention—deferred acceptance
with random tie-breaking—is not ex ante stable and under some circumstances
can lead to ex ante discrimination among some students. We then propose two
new mechanisms, which satisfy two notions of ex ante stability we introduce—
a strong one and a weak one—and we show that these mechanisms are optimal
within the class of mechanisms that satisfy these respective criteria.

Keywords. Matching, school choice, deferred acceptance, stability, ordinal effi-
ciency, market design.

JEL classification. C71, C78, D71, D78.

1. Introduction

Following the 1987 decision of the U.S. Court of Appeals, the Boston school district intro-
duced a possibility of “choice” for public schools by relaxing the mandatory zoning pol-
icy. In 1989, a centralized clearinghouse, now commonly referred to as the Boston mech-
anism (Abdulkadiroğlu and Sönmez 2003b), was adopted by the district. The Boston
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mechanism remains the most widely used student assignment mechanism in the United
States and is currently employed by numerous centralized clearinghouses worldwide.

Beginning with Abdulkadiroğlu and Sönmez (2003b), the literature emphasizes seri-
ous flaws associated with the Boston mechanism, mainly rooted in its obvious manip-
ulability. An attractive alternative to the Boston mechanism, the Gale–Shapley student-
optimal stable mechanism, was eventually adopted by the Boston and New York City
public school systems via the collaborative effort of economists (see Abdulkadiroğlu
et al. 2005, 2006).

In school-choice problem, schools’ priorities over students constitute the basis for
fairness considerations, which the newly adopted Boston/NYC mechanism achieves
through a property of “ex post stability.” At a stable matching, there does not exist any
student i who prefers a seat at a different school c than the one he is assigned to such
that either (i) school c has not filled its quota or (ii) school c has an enrolled student who
has strictly lower priority than i (Gale and Shapley 1962). In practice, there are typically
several students who fall in the same priority class at schools, and a common method
in dealing with ties within priorities is to use an explicit tie-breaking lottery. A mecha-
nism is ex post stable if it induces a lottery over stable matchings (i.e., an ex post stable
lottery). Thus, the newly adopted Boston/NYC mechanism is ex post stable.

An important debate in school choice centers around the three-way tension between
fairness, efficiency, and incentives. Although under the student-optimal stable mecha-
nism, reporting preferences truthfully is a dominant strategy for each student regardless
of the tie-breaking rule used (Roth 1982, Dubins and Freedman 1981), the ensuing as-
signment can lead to significant welfare losses, both ex ante and ex post. One source
of this welfare loss is the inherent incompatibility between ex post stability and ex post
Pareto efficiency (Roth 1982). A second source stems from the use of a tie-breaking rule,
the effect of which can be further exacerbated when coupled with the first (cf. Erdil and
Ergin 2008; Abdulkadiroğlu et al. 2009; Kesten 2010).

Although ex post stability is a meaningful interpretation of fairness for determin-
istic outcomes, for lottery mechanisms such as those used for school choice, its suit-
ability as the right fairness notion is less clear. To begin with, ex post stability is not
defined over stochastic assignments, but rather over deterministic matchings obtained
post tie-breaking. And while random tie-breaking conveniently makes the deterministic
approaches still applicable, it nevertheless precludes broader views of ex ante fairness
and can potentially entail important welfare loss.

In this paper, we present a general model of school choice in which (i) school priori-
ties can be coarse as in real life and (ii) matchings can be random, as opposed to previous
models of school choice. Over random matchings, we propose two powerful notions of
fairness that are stronger than ex post stability. We say that a random matching causes
ex ante justified envy if there are two students i and j, and a school c such that student
i has strictly higher priority than j for school c but student j can be assigned to school c
with positive probability while i can be assigned to a less desirable school for him than
c with positive probability (i.e., i has ex ante justified envy toward j). We refer to a ran-
dom matching as ex ante stable if it eliminates ex ante justified envy. This notion can be
viewed as the natural analogue of stability when fairness considerations are based solely
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on the probabilities that each student will be assigned to different schools. We show that
(cf. Example 1) the new Boston/NYC mechanism, despite its ex post stability, is not ex
ante stable.

Besides its normative support, our ex ante approach has an important practical ap-
peal. Even though ex post stability is normatively appealing as a fairness concept, the set
of ex post stable lotteries is highly nontractable for the random matching setup. Indeed,
it is difficult to characterize the probability assignment matrix of a generic ex post stable
lottery since an ex post unstable lottery may also induce the same matrix as an ex post
stable lottery (as demonstrated in our Example 1).1 In this case, one possible practical
solution is approximating ex post stability through ex ante stability.

Coarse priority structures also give rise to natural fairness considerations concern-
ing students who belong to the same priority group for some school. We say that a ran-
dom matching causes ex ante discrimination (among equal-priority students) if there
are two students i and j with equal priority for a school c such that j enjoys a higher
probability of being assigned to school c than student i even though i suffers from a
positive probability of being assigned to a less desirable school for him than school c.
We show that the new Boston/NYC mechanism (cf. Example 2) also induces ex ante dis-
crimination between equal-priority students.2

We refer to a random matching as strongly ex ante stable if it eliminates both ex ante
justified envy and ex ante discrimination. Both ex ante stability and strong ex ante sta-
bility imply ex post stability. The latter also implies equal treatment of equals. We pro-
pose two new mechanisms that select “special” ex ante stable and strongly ex ante stable
random matchings.

Our first proposal, the fractional deferred-acceptance (FDA) mechanism, selects the
unique strongly ex ante stable random matching that is ordinally Pareto dominant
among all strongly ex ante stable random matchings (Theorems 2 and 3). The algo-
rithm it employs is in the spirit of the deferred-acceptance algorithm of Gale and Shap-
ley (1962), with students applying to schools in an order of decreasing preference and
schools tentatively retaining students based on priority. Unlike previous mechanisms,
however, the FDA mechanism does not rely on tie-breaking. Loosely, schools always
reject lower-priority students in favor of higher-priority students (if shortages arise) as
in the deferred-acceptance algorithm. However, whenever there are multiple equal-
priority students being considered for assignment to a school for which there is insuffi-
cient capacity, the procedure tentatively assigns an equal fraction of these students and
rejects the rest of the fractions. These rejected “fractions of students” continue to apply
to their next-preferred schools in the usual deferred-acceptance fashion as if they were

1A similar difficulty lies in the identification of ex post efficient lotteries as illustrated by Abdulkadiroğlu
and Sönmez (2003a).

2The elimination of ex ante discrimination is more than a normative concept and is rooted in equal
treatment laws. Abdulkadiroğlu and Sönmez (2003b) cite a lawsuit filed by a student against the state of
Wisconsin, because the superintendent denied the student entry into a school in a district in which the
student did not live based on limited space, while “similar” students were admitted. The Circuit Court
reversed the decision as it considered the superintendent’s decision “arbitrary” and the Appeals Court af-
firmed (cf. Michael E. McMorrow, Petitioner–Respondent, v. State superintendant of public instruction,
John T. Benson, Respondent–Appellant, 99-1288, Court of Appeals of Wisconsin. Decided on July 25, 2000).
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individual students. The procedure iteratively continues to make tentative assignments
until one full fraction of each student is assigned to some school. We interpret the as-
signed fractions of a student at the end of the procedure as his assignment probability
to each corresponding school by the FDA mechanism.3

Our second proposal, the fractional deferred-acceptance and trading (FDAT) mech-
anism selects an ex ante stable random matching that (i) treats equals equally and (ii) is
ordinally Pareto undominated within the set of ex ante stable random matchings (The-
orems 4 and 5). It employs a two-stage algorithm that stochastically improves upon the
FDA matching. The FDAT mechanism starts from the random-matching outcome of the
FDA algorithm and creates a trading market for school-assignment probabilities. In this
market, the assignment probability of a student to a school can be traded for an equal
amount of probabilities at better schools for the student as long as the trade does not re-
sult in ex ante justified envy of some other student. Such trading opportunities are char-
acterized by stochastic ex ante stable improvement cycles, i.e., the list of students who
can trade fractions of schools among each other without violating any ex ante stability
constraints. We show that a random matching is constrained ordinally efficient among
ex ante stable random matchings if and only if there is no stochastic ex ante stable im-
provement cycle (Proposition 5). However, many stochastic ex ante stable improvement
cycles can coexist and intersect with each other. To resolve these cycles in a procedu-
rally fair way that preserves equal treatment of equals, in the second stage of the FDAT
mechanism, we adapt a combinatorial network-flow algorithm originally proposed by
Athanassoglou and Sethuraman (2011) for a problem domain without any priorities, in
which ordinal efficiency can be improved by trading fractions of indivisible goods when
agents have probabilistic endowments. In our case, endowments correspond to the FDA
assignment probabilities.

In indivisible good allocation problems, strategy-proofness is essentially incompati-
ble with ordinal efficiency.4 We also show that there is no strategy-proof mechanism that
is strongly ex ante stable. Due to these tensions, the ultimate cost we pay for superior
welfare and stability is in terms of incentives. Neither of our proposals is strategy-proof.
However, recent work suggests that these considerations are likely to be mitigated for
large populations (cf. Kojima and Manea 2010, Azevedo and Budish 2013). Indeed, we
show that in a large market with diverse preference types of students, FDA becomes
strategy-proof (Theorem 7).

Our two proposals are practically applicable and enable us to readily contrast their
performances with the existing random tie-breaking-based mechanisms. Using the ag-
gregate statistics of the Boston school-choice data from Abdulkadiroğlu et al. (2006),

3In contrast with the deferred-acceptance algorithm of Gale and Shapley (1962), the above described
procedure may involve rejection cycles that prevent the procedure from terminating in a finite number of
steps. Therefore, to obtain a convergent algorithm, we also couple this procedure with a “cycle resolution
phase.”

4More precisely, there is no ordinally efficient and strategy-proof mechanism that satisfies the minimal
equity requirement of equal treatment of equals. For example, notwithstanding its appeal in terms of envy-
freeness and ordinal efficiency, the probabilistic serial mechanism of Bogomolnaia and Moulin (2001) that
has triggered a rapidly growing literature on the random assignment problem is not strategy-proof.
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we estimate the actual performance of FDAT and compare it with popular assignment
mechanisms from practice and theory. Specifically, we compare the overall efficiency
of FDAT with those of the Boston/NYC mechanism and a prominent ex post trad-
ing approach from the literature. The latter two mechanisms are only ex post stable,
while FDAT is also ex ante stable. Remarkably, we observe that FDAT almost first-
order stochastically dominates the Boston/NYC mechanism. We also find that the
Boston/NYC and existing theory mechanisms produce very little ex ante justified envy
under the aggregate statistics of the Boston data. This suggests that ex ante stability can
lend itself to be used as a fairly good approximation of ex post stability, which would in
turn enable market designers to include the highly rich set of stochastic mechanisms in
their tool kit.

2. Related literature

In dealing with coarse priority structures, previous mechanism design efforts have thus
far relied on the deterministic approach to break ties in priorities randomly; cf. Pathak
and Sethuraman (2011), Abdulkadiroğlu et al. (2009, forthcoming), Erdil and Ergin
(2008), and Ehlers and Westkamp (2011). Our approach does not rely on any form of tie-
breaking and enables us to work with a general school-choice model allowing for a rich
set of stochastic mechanisms, and doing so we identify and introduce new mechanisms
that lead to superior levels of welfare and fairness compared with the deterministic tie-
breaking-based mechanisms used in practice and/or proposed in the literature.

There are several strands of literature related to our paper. In the two-sided match-
ing literature, a version of the random-matching problem with strict preferences on both
sides of the market was analyzed by Roth et al. (1993).5 Our ex ante stability and strong
ex ante stability concepts are equivalent when school priorities are strict, and they co-
incide with Roth, Rothblum, and Vande Vate’s strong stability concept. Their analysis,
however, does not apply to weak priorities, which are inherent features of school-choice
problems. The closest attempt to ours is Erdil and Kojima (2007), who independently
formulate concepts similar to ours in a school-choice framework. They do not pursue
mechanisms satisfying their proposed properties. Echenique et al. (2013) study observ-
able implications of ex post stability for aggregate matchings in nontransferable utility
matching markets and propose a condition, similar to our ex-ante stability notion, that
is necessary and sufficient for an aggregate matching to be rationalizable.

Alkan and Gale (2003) consider a deterministic two-sided schedule matching model
in which the two sides are referred to as firms and workers. In their model, a worker can
work for one hour in total, but he can share his time between different firms. A firm can
hire fractions of workers that add up to a certain quota of hours. Both firms and workers
are equipped with complex preference structures over these fractions. One can interpret
a fractional deterministic matching as a random matching. Thus, this similarity creates
some overlap between the two models. Alkan and Gale propose a type of stability with
respect to these preferences that is stronger than our ex ante stability. They prove that

5Also see Teo and Sethuraman (1998) and Manjunath (2013, 2014).
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such a set of stable matchings is nonempty provided that certain substitutability and
consistency requirements are met, and that this set forms a lattice under certain as-
sumptions over the firm and worker preferences. They do not provide any well defined
algorithms to compute the extremal elements of this lattice.

Recently, researchers have started to think about ex ante efficiency in school-choice
mechanisms. Specifically, to capture preference intensities, these approaches assume
that each student is endowed with cardinal preferences over schools (as opposed to
our assumption of ordinal preferences). Abdulkadiroğlu et al. (2011) show that in a
highly specialized incomplete information setting, the Boston mechanism’s Bayesian
equilibria Pareto dominate the dominant-strategy equilibrium outcome of the student-
optimal stable Gale–Shapley mechanism. Featherstone and Niederle (2008) show that
the Boston mechanism would result in ex ante efficient random matchings in an in-
complete information equilibrium when there are no priorities, and they support their
finding through experiments.

Another strand of literature deals with the probabilistic assignment of indivisible
goods without assuming a priority structure. At least since Hylland and Zeckhauser
(1979) and Bogomolnaia and Moulin (2001), it is well known that this approach is supe-
rior in terms of efficiency to randomization over priority-based deterministic methods.
The latter paper and Katta and Sethuraman (2006) propose ordinally efficient proce-
dures, treating equals equally for the strict and weak preference domains, respectively.
Yılmaz (2009, 2010) generalizes these methods to an indivisible good assignment prob-
lem, where some agents have initial property rights of some of the goods for the strict
and weak preference domains, respectively. Finally, Athanassoglou and Sethuraman
(2011) extend these models to a framework where the initial property rights could be
over fractions of goods. We also embed one version of their algorithm into the second
stage of our fractional deferred-acceptance and trading procedure as a way to achieve
“fair” probability trading.

Erdil and Ergin (2008) and Abdulkadiroğlu et al. (2009) have pointed out that the
new Boston/NYC mechanism may be subject to welfare losses when ties in priorities
are broken randomly. Erdil and Ergin (2007, 2008) propose methods for improved ef-
ficiency without violating exogenous stability constraints for school-choice and two-
sided matching problems, respectively.6 All these papers emphasize that random tie-
breaking may entail an ex post efficiency loss. We, on the other hand, argue that it may
also entail an ex ante fairness loss, both among students with different priorities (ex ante
justified envy) and among students with equal priorities (ex ante discrimination).

The current paper generalizes the unrelated approaches summarized in the previous
two paragraphs and obtains a unified framework in dealing with school-choice prob-
lems in a probabilistic setting with ordinal preferences. Although we do not focus on

6Kesten (2010) provides a new mechanism that aims to eliminate the efficiency loss under the Gale–
Shapley mechanism by allowing students to give up certain priorities whenever it does not hurt them to do
so.
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ex post stable mechanisms per se, our analysis also establishes some important infras-
tructure for studying ex post stable mechanisms in a probabilistic setting where much
stronger welfare criteria than ex post efficiency can be conceived. Since the mecha-
nism recently adopted in Boston and New York was chosen instead of a Pareto-efficient
alternative7 due to its superior fairness/stability features, we believe that the stabil-
ity consideration plays a key role for the practicality of a mechanism in the context of
school choice, distinguishing this problem from most other allocation problems. Con-
sequently, our study focuses not only on constrained ordinal efficiency, but also on ex
ante fairness.

The rest of the paper is organized as follows. Section 3 formally introduces a general
model of school choice. Section 4 discusses desirable properties of mechanisms and
introduces the new ex ante stability criteria. Section 5 presents our first proposal, the
fractional deferred-acceptance mechanism, and the related results. Section 6 presents
our second proposal, the fractional deferred-acceptance and trading mechanism, and
the related results. Section 7 inspects the strategic properties of the mechanisms we
proposed. Section 8 concludes. The proofs of our main results are relegated to the
Appendices.

3. The model

We start by introducing a general model for school choice. A school-choice problem is a
five-tuple [I�C�q�P��], where:

• I is a finite set of students, each of whom is seeking a seat at a school.

• C is a finite set of schools.

• q= (qc)c∈C is a quota vector of schools such that qc ∈ Z++ is the maximum number
of students who can be assigned to school c. We assume that there is enough space
for all students, that is,

∑
c∈C qc = |I|.8

• P = (Pi)i∈I is a strict preference profile for students such that Pi is the strict prefer-
ence relation of student i over the schools.9 Let Ri refer to the associated weak
preference relation with Pi. Formally, we assume that Ri is a linear order, i.e.,
a complete, transitive, and antisymmetric binary relation. That is, for any c�a ∈ C,
c Ri a if and only if c = a or c Pi a.

7This is the so-called top trading cycles mechanism that has been also advocated by Abdulkadiroğlu
and Sönmez (2003b) as an attractive replacement. This mechanism is strategy-proof just like the new
Boston/NYC mechanism, but is not ex post stable.

8If originally
∑
c∈C qc > |I|, then we introduce |I| − ∑

c∈C qc additional virtual students, who have the
lowest priorities at each school (say, a uniform priority ranking is available among virtual students for all
schools and all virtual students have common strict preferences over schools). If originally

∑
c∈C qc < |I|,

then we introduce a virtual school with a quota
∑
c∈C qc − |I|, which is the worst choice of each student,

such that all students have equal priority for this school.
9For simplicity of exposition, we assume that all schools are acceptable for all students. All of our results

are easy to generalize to the setting with unacceptable schools using a null school with quota ∞ and sub-
stochastic matrices instead of bi-stochastic matrices.
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• �= (�c)c∈C is a weak priority structure for schools such that �c is the weak priority
order of school c over the students. That is, �c is a reflexive, complete, and tran-
sitive binary relation on I. Let �c be the acyclic portion and let ∼c be the cyclic
portion of �c . That is, i �c j means that student i has at least as high priority as
student j at school c, i�c j means that i has strictly higher priority than j at c, and
i∼c j means that i and j have equal priority at c.

Occasionally, we will fix I, C, and q, and refer to a problem by the strict preference
profile of the students and weak priorities of schools, [P��].

We are seeking matchings such that each student is assigned a seat at a single
school and the quota of no school is exceeded. We also allow random (or probabilistic)
matchings.

A random matching ρ= [ρi�c]i∈I�c∈C is a real stochastic matrix, i.e., it satisfies (i) 0 ≤
ρi�c ≤ 1 for all i ∈ I and c ∈ C, (ii)

∑
c∈C ρi�c = 1 for all i ∈ I, and (iii)

∑
i∈I ρi�c = qc for all

c ∈ C. Here ρi�c represents the probability that student i is being matched with school c.
Moreover, the stochastic row vector ρi = (ρi�c)c∈C denotes the random matching (vector)
of student i at ρ, and the stochastic column vector ρc = (ρi�c)i∈I denotes the random
matching (vector) of school c at ρ. A random matching ρ is a (deterministic) matching if
ρi�c ∈ {0�1} for all i ∈ I and c ∈ C. Let X be the set of random matchings and let M ⊆ X
be the set of matchings. We also represent a matching μ ∈ M as the unique nonzero
diagonal vector of matrixμ, i.e., as a listμ= ( i1c1

i2
c2

···
···

i|I|
c|I| ) such that for each �,μi��c� = 1.

We interpret each student i� as matched with school c� in this list and, with a slight abuse
of notation, use μi� to denote the match of student i�.

A lottery λ is a probability distribution over matchings. That is, λ = (λμ)μ∈M such
that for all μ ∈ M, 0 ≤ λμ ≤ 1 and

∑
μ∈M λμ = 1. Let �M denote the set of lotteries. For

any λ ∈ �M, let ρλ be the random matching of lottery λ. That is, ρλ = [ρλi�c]i∈I�c∈C ∈ X
is such that ρλi�c = ∑

μ∈M : μi=c λμ for all i ∈ I and c ∈ C. In this case, we say that lot-

tery λ induces random matching ρλ. Observe that ρλi�c is the probability that student i
will be assigned to school c under λ. Let M(λ) ⊆ M be the support of λ, i.e., M(λ) =
{μ ∈ M :λμ > 0}.

We state the following theorem whose proof is an extension of the proof of the
standard Birkhoff–von Neumann theorem (cf. von Neumann 1953, and see Kojima and
Manea 2010 for the school-choice extension).

Theorem 1 (School-choice Birkhoff–von Neumann theorem). For any random match-
ing ρ ∈X , there exists a lottery λ ∈ �M that induces ρ, i.e., ρ= ρλ.

Through this theorem’s constructive proof and related algorithms in combinational
optimization theory, such as the Edmonds (1965) algorithm, one can find a lottery im-
plementing ρ in polynomial time. In general, this lottery need not be unique, i.e., more
than one lottery may induce the same random matching.10 Nevertheless, we will focus
on random matchings rather than lotteries in our analysis. Participants in school choice

10This is because random matchings are only marginal distributions, whereas lotteries represent joint
distributions.
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are usually presented only with their own odds of being assigned to different schools,
and so it is natural to define notions of fairness and stability in these terms.

A (school-choice) mechanism selects a random matching for a given school-choice
problem. For problem [P��], we denote the random matching of a mechanism ϕ by
ϕ[P��] and denote the random matching vector of a student i by ϕi[P��].

4. Properties

4.1 Previous notions of fairness

We first define two previously studied notions that are satisfied by many mechanisms in
the literature and real life. Throughout this section, we fix a problem [P��].

We start with the most standard fairness property in school-choice problems as well
as other allocation problems. This weakest notion of fairness is related to the treatment
of equal students, i.e., students with the same preferences and priorities. We refer to
two students i� j ∈ I as equal if Pi = Pj and i ∼c j for all c ∈ C. A random matching ρ
treats equals equally if for any equal student pair i� j ∈ I, we have ρi = ρj , that is, two
students with exactly the same preferences and equal priorities at all schools should be
guaranteed the same enrollment chance at every school at a matching that treats equals
equally. The real-life school-choice mechanism used earlier in Boston as well as the new
NYC/Boston mechanism treat equals equally.

Before introducing the second probabilistic fairness property, we define a determin-
istic fairness notion. A (deterministic) matching μ is stable if there is no student pair i,
j such that μ(j) Pi μ(i) and i�μ(j) j.11 That is, a matching is stable if there is no student
who envies the assignment of a student who has lower priority than he does for that
school. Whenever such a student pair exists at a matching, we say that there is justified
envy. Let S ⊆ M be the set of stable matchings. A stable matching always exists (Gale
and Shapley 1962).

The second probabilistic fairness property is a direct extension of stability to lottery
mechanisms: A random matching ρ is ex post stable if it is induced by a lottery whose
support includes only stable matchings, i.e., there exists some λ ∈ �M such thatM(λ)⊆
S and ρ= ρλ.

Since recently introduced real-life mechanisms are ex post stable (and the imple-
mented matchings are stable), ex post stability has been seen as a key property in previ-
ous literature. A characterization of ex post stability exists for strict priorities (Roth et al.
1993), yet such a characterization is unknown for weak priorities.

4.2 A new notion: Ex ante stability

We now formalize the two fairness notions over random matchings that were informally
discussed in the Introduction.

11The early literature on college admissions and school choice (e.g., Balinski and Sönmez 1999 and
Abdulkadiroğlu and Sönmez 2003b) used the term “fair” instead of “stable.” Subsequent studies have used
the term “stable” more often based on the connection of their models with the two-sided model of Gale and
Shapley (1962). Since we already have several fairness concepts, we have adopted this terminology to avoid
confusion.
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We say that a random matching ρ ∈ X causes ex ante justified envy of i ∈ I toward
(lower-priority student) j ∈ I \ {i}, with i �c j, for c ∈ C if ρi�a > 0 for some c Pi a and
ρj�c > 0. A random matching is ex ante stable if it does not cause any ex ante justified
envy.

To elaborate on this choice of definition, this notion stipulates that, being the higher
priority student, student i should be granted all the enrollment chance at school c,
should he so desire, before student j is given any chance at this school. For example,
if, contrary to the requirement, student j were to be assigned to school c with positive
probability even though i is assigned to a less desirable school for him than c with pos-
itive probability, this would give rise to a possible violation of student i’s priority for
school c in the final realization of assignments.

Observe that ex ante stability and stability are equivalent concepts for deterministic
matchings. Although ex ante stability is appealing, it does not impose any restrictions
when dealing with fairness issues regarding students with equal priorities.

We say that a random matching ρ ∈ X induces ex ante discrimination (among equal-
priority students) i� j ∈ I, with i ∼c j, for c ∈ C, if ρi�a > 0 for some c Pi a and ρi�c < ρj�c .
Further discussion of our choice of definition may be useful. Given that students i and j
have the same priority for school c, it would be natural to assign the two students to this
school with the same probability. However, note that the two students may rank c quite
differently. Suppose, for example, that i likes many other schools better than c, whereas
j likes c best. In this case, giving i a lower shot at c than j would not constitute inducing
ex ante discrimination as long as he is given positive probability only at more preferred
schools than c. Thus, the definition implies that if both i and j are assigned to schools
that they deem inferior to c with positive chance, then they should both be assigned to
c with equal probability.

A random matching is strongly ex ante stable if it eliminates both ex ante justified
envy and ex ante discrimination.

The elimination of ex ante discrimination implies equal treatment of equals. Thus,
a strongly ex ante stable random matching satisfies equal treatment of equals. Strong
ex ante stability implies ex ante stability, but the converse is not true. Theorem 2 (be-
low) shows that a strongly ex ante stable random matching always exists. For determin-
istic matchings, elimination of ex ante discrimination among equal-priority students
is equivalent to a no-envy12 requirement among students with equal priority (due to a
school for which equal priority is shared) and thus may not always be guaranteed.

We compare ex ante (and strong ex ante) stability with the earlier notion, ex post
stability. It turns out that ex post stability is weaker than ex ante stability (and strong ex
ante stability), while the converse is not true.

Proposition 1. If a random matching is ex ante stable, then it is also ex post stable.
Moreover, any lottery that induces an ex ante stable random matching has a support that
includes only stable matchings.

12Given a deterministic matchingμ ∈ M, there exists no-envy between a pair of students i� j ∈ I ifμi Pi μj
and μj Pj μi.
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Proof. We prove the contrapositive of the second part of the proposition. The first part
of the proposition follows from the second part. Let a random matching ρ ∈ X and a
lottery λ ∈ �M that induces it be given, i.e., ρλ = ρ. Suppose there exists some unstable
matching μ ∈ M\S such that λμ > 0. Then there exists a blocking pair (i� c) ∈ I×C such
that c Pi μi while for some j ∈ I, μj = c with i �c j. Since λμ > 0, we have ρj�c > 0 while
ρi�μi > 0, i�c j, and c Pi μi, i.e., ρ is not ex ante stable. �

On the other hand, the following example shows that the new NYC/Boston mecha-
nism is not ex ante stable and, hence, an ex post stable lottery can be ex ante unstable,
i.e., the converse of the first part of the above proposition does not hold.

Example 1. Consider the following problem with five students {1�2�3�4�5} and four
schools {a�b� c�d}, where each of schools a, b, and c has one seat, and d has two seats.
The priority orders and student preferences are as follows, where vertical dots represent
arbitrary rankings of remaining students/objects:

�a �b �c �d
5 4�5 1�3

���

1
���

���

2
���

P1 P2 P3 P4 P5

c a c b b

a d d d a

d
���

���
���

���
���

Consider the new NYC/Boston mechanism, which uniformly randomly chooses a sin-
gle tie-breaking order for equal-priority students at each school and then employs the
student-proposing deferred-acceptance algorithm using the modified priority structure.
It is straightforward to compute that this mechanism implements the lottery

λ= 1
4

(
1 2 3 4 5
d d c b a

)
︸ ︷︷ ︸

μ1

+ 1
4

(
1 2 3 4 5
a d c d b

)
︸ ︷︷ ︸

μ2

+ 1
4

(
1 2 3 4 5
c d d b a

)
︸ ︷︷ ︸

μ3

+ 1
4

(
1 2 3 4 5
c a d d b

)
︸ ︷︷ ︸

μ4

�

The above four deterministic matchings in the support of λ are stable since they are ob-
tained by the student-proposing deferred-acceptance algorithm for tie-breakers 3 �c 1
and 4 �b 5; 3 �c 1 and 5 �b 4; 1 �c 3 and 4 �b 5; 1 �c 3 and 5 �b 4, respectively. Thus λ is
ex post stable. However, the random matching that lottery λ induces is not ex ante stable
because student 1 has ex ante justified envy toward student 2 for school a. Matching μ1

implies that student 1 suffers from a positive probability of being assigned to school d,
while matching μ4 implies that student 2 enjoys a positive probability of being assigned
to school a, for which he has strictly lower priority than 1.
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Interestingly, one can find an alternative lottery that, despite being equivalent to λ,
is ex post unstable:

λ′ = 1
4

(
1 2 3 4 5
d a c d b

)
︸ ︷︷ ︸

μ′
1

+ 1
4

(
1 2 3 4 5
c d d b a

)
︸ ︷︷ ︸

μ′
2

+ 1
4

(
1 2 3 4 5
c d d b a

)
︸ ︷︷ ︸

μ′
3

+ 1
4

(
1 2 3 4 5
a d c d b

)
︸ ︷︷ ︸

μ′
4

�

The support of λ′ contains an unstable matching, namelyμ′
1, since student 1 has school-

wise justified envy toward student 2 at this matching. Lottery λ′ exacerbates the justified
schoolwise envy situation under λ by transforming it from ex ante to ex post. ♦

Worse still, the new NYC/Boston mechanism may also induce ex ante
discrimination.

Example 2. Consider the following problem with three students {1�2�3} and three
schools {a�b� c} each with a quota of 1. The priority orders and student preferences are

�a �b �c
3 2 2

1�2 1 1
3 3

P1 P2 P3

a a b

b c a

c b c

The tie-breaking lottery assigns the second priority at school a to equal-priority students
1 and 2 with equal chances. Then the new NYC/Boston mechanism (which operates on
the student-proposing deferred-acceptance algorithm coupled with either strict priority
structure) implements the lottery

λ= 1
2

(
1 2 3
a c b

)
︸ ︷︷ ︸

μ1

+ 1
2

(
1 2 3
b c a

)
︸ ︷︷ ︸

μ2

�

Observe that random matching ρλ induces ex ante discrimination between students 1
and 2 for school a since matchingμ1 implies that student 1 is given a positive probability
of being assigned to school a while student 2 who, despite having equal priority for a,
always ends up at school c, which she finds worse than a. In particular, the ex post
observation that student 2 has been assigned to school c by this mechanism cannot be
attributed to an unlucky lottery draw to determine the priority order at school a. ♦

4.3 Pareto efficiency

We define and work with two Pareto efficiency concepts defined over ordinal
preferences.
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For student i ∈ I, random-matching vector πi ordinally (Pareto) dominates random-
matching vector ρi if

∑
aRic

πi�a ≥ ∑
aRic

ρi�a for all c ∈ C and
∑
aRib

πi�a >
∑
aRib

ρi�a for
some b ∈ C, i.e., πi first-order stochastically dominates ρi with respect to Pi. A random
matching π ∈ X ordinally (Pareto) dominates ρ ∈ X if for all i ∈ I, either πi ordinally
dominates ρi or πi = ρi, and there exists at least one student j ∈ I such that πj ordinally
dominates ρj . We say that a random matching is ordinally (Pareto) efficient if there is no
random matching that ordinally dominates it.

We refer to ordinally efficient deterministic matchings as Pareto efficient. A random
matching is ex post (Pareto) efficient if there exists a lottery that induces this random
matching and has its support only over Pareto efficient matchings.

Ordinal efficiency implies ex post efficiency, while the converse is not true for ran-
dom matchings (Bogomolnaia and Moulin 2001). It is well known that even with strict
school priorities, ex post stability and ex post efficiency are not compatible.

Proposition 2 (Roth 1982). There does not exist any ex post stable and ex post efficient
mechanism.

Since we take fairness notions as given, we will focus on constrained ordinal effi-
ciency and constrained ordinal dominance as the proper efficiency concepts for mech-
anisms that belong to a particular class.

5. Strongly ex ante stable school choice

5.1 Fractional deferred-acceptance mechanism

Strong ex ante stability is an appealing stability property since (i) it guarantees all the
enrollment chances to a higher-priority student at his preferred school before all lower-
priority students (i.e., by elimination of ex ante justified envy) thereby also ensuring
ex post stability, and (ii) it treats equal-priority students—not only equal students—
fairly by giving them equal enrollment chance at “competed”13 schools (i.e., by elimi-
nation of ex ante discrimination). We now introduce the central mechanism in the the-
ory of strongly ex ante stable lotteries. This mechanism employs a fractional deferred-
acceptance (FDA) algorithm.

The FDA algorithm is in the spirit of the classical student-proposing deferred-
acceptance algorithm of Gale and Shapley (1962). In this algorithm, we talk about a
“fraction of a student” applying to, being tentatively assigned to, or being rejected by a
school. In using such language, we have in mind that upon termination of the algorithm,
the fraction of a student permanently assigned to some school will be interpreted as the
assignment probability of the student to that school. Hence, fractions in fact represent
enrollment chances. In the FDA algorithm, a student fraction, by applying to a school,
may seek a certain fraction of one seat at that school. As a result, depending on its quota

13To be precise, we would call a school such as c in the definition of ex ante discrimination a competed
school. That is, it is not student i’s least preferred school among those for which his enrollment chance is
positive, i.e., student i is competing with student j for school c.
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and the priorities of other applicants, the school may tentatively assign a certain frac-
tion (possibly less than the fraction the student is seeking) of a seat to the student and
reject any remaining fraction of the student. In the algorithm description below, when
we say “fraction w of student i applies to school c,” this means that at most a fraction
w of a seat at school c can be assigned to student i. As an example, suppose fraction 1

3
of student 1 applies to school c at some step of the algorithm. School c then may, for
example, admit 1

4 of student i and reject the remaining 1
12 of him. We next give a more

precise description.

The FDA Algorithm. Step 1. Each student applies to his favorite school. Each school
c considers its applicants. If the total number of applicants is greater than qc , then appli-
cants are tentatively assigned to school c one by one, starting from the highest priority
applicants such that equal-priority students, if assigned a fraction of a seat at this school
at all, are assigned an equal fraction. Unassigned applicants (possibly some being a frac-
tion of a student) are rejected.

���

Step s. In general, each student who has a rejected fraction from the previous step
applies to his next-favorite school that has not yet rejected any fraction of him. Each
school c considers its tentatively assigned applicants together with the new applicants.
Applicant fractions are tentatively assigned to school c starting from the highest-priority
applicants as follows: For all applicants of the highest-priority level, increase the tenta-
tively assigned shares from 0 at an equal rate until there is an applicant who has been
assigned all of his fraction. In such a case, continue with the rest of the applicants of this
priority level by increasing the tentatively assigned shares at an equal rate until there is
another applicant who has been assigned all of his fraction. When all applicant fractions
of this priority level are served, continue with the next priority level in a similar fashion.
If, at some point during the process, the whole quota of school c has been assigned, then
reject all outstanding fractions of all applicants.

The algorithm terminates when no unassigned fraction of a student remains. At this
point, the procedure is concluded by making all tentative random assignments perma-
nent. We next give a detailed example to illustrate the FDA algorithm.

Example 3 (How does the FDA algorithm work?). Consider the following problem with
six students {1�2�3�4�5�6} and four schools {a�b� c�d}, two, b and d, with a quota of 1,
and the other two, a and c, with a quota of 2:

�a �b �c �d
��� 6 4 5
��� 1�3 2�3�5 3�6
��� 5

���
���

���
���

���
���

P1 P2 P3 P4 P5 P6

b c d b c d

a a c c d c
��� b b

���
��� b

��� d a
���

��� a
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Step 1. Students 1 and 4 apply to school b (with quota 1), which tentatively admits

student 1 and rejects student 4. Students 2 and 5 apply to school c (with quota 2),

which does not reject any of their fractions. Students 3 and 6 apply to school d

(with quota 1), which tentatively admits 1
2 of 6 and 1

2 of 3, and rejects the remaining

halves.

Step 2. Having been rejected by school d, each outstanding half-fraction of students

3 and 6 applies to the next-favorite school, which is school c. Having been rejected by

school b, student 4 applies to his next choice, which is also school c. This means school

c considers half-fractions of each of 3 and 6, and one whole of 4 together with one whole

of 2 and 5. Among the five students, student 4 has the highest priority and, hence, is

tentatively placed at school c. Next in priority are students 2, 3, and 5 with equal pri-

ority; thus, 1
3 of each is tentatively admitted at school c, which exhausts its quota of 2.

As a consequence, 1
2 of student 6, 1

6 of student 3, and 2
3 of each of students 2 and 5 are

rejected by c.

Step 3. The next choice of student 2 is a, and, hence, the rejected 2
3 of him applies

to a and is tentatively admitted there. The next choice of students 3 and 6 is b, and,

hence, 1
2 of student 6 and 1

6 of student 3 apply to b, which is currently full and holding

the whole of student 1. Since student 6 has higher priority than both 1 and 3, the entire

applying fraction of student 6 is tentatively admitted. Since students 1 and 3 share equal

priority at b, we gradually increase assigned shares of both students from 0 at an equal

rate. This implies that 1
6 of student 3 and 1

3 of student 1 are to be tentatively admitted,

and the remaining 2
3 of student 1 is to be rejected. The next choice of student 5 is d,

and, hence, 2
3 of him applies to d, which is currently holding 1

2 of both student 3 and

student 6. Since student 5 has higher priority than students 3 and 6, both of whom have

equal priority, the whole 2
3 of student 5 is tentatively admitted, whereas 1

6 of each of

students 3 and 6 is tentatively admitted, causing the remaining 1
3 of each student to be

rejected.

Step 4. The next choice of student 1 is a; hence, the rejected 2
3 of him applies to

a and is tentatively admitted there. For students 3 and 6, the best choice that has

not rejected either is b, and, hence, 1
3 of each student applies to b. School b is cur-

rently full and holding 1
2 of student 6, 1

6 of student 3, and 1
3 of student 1. Since stu-

dents 1 and 3 have equal but lower priority than student 6 at b, the school holds on

to all of the 1
2 + 1

3 = 5
6 fraction of 6, and only 1

12 of each of students 1 and 3 is ten-

tatively admitted by b, while the remaining 1
4 of student 1 and 5

12 of student 3 are

rejected.

Step 5. The next choice of students 1 and 3 after b is a, and, hence, 1
4 of student 1

and 5
12 of student 3 apply to a, which is not filled yet and can accommodate all of these

fractions: It is currently holding 11
12 of student 1, 5

12 of student 3, and 2
3 of student 2.

Since there are no further rejections, the algorithm terminates and returns the random
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matching outcome

a b c d

1 11
12

1
12 0 0

2 2
3 0 1

3 0

3 5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6 0 1

6
♦

While the FDA algorithm is intuitive, the computation of its outcome poses a new
challenge that did not exist for its deterministic analogue (i.e., the version proposed by
Gale and Shapley). It turns out that in the FDA algorithm, a student may end up applying
to the same school an infinite number of times. Thus, we next observe that the FDA
algorithm as explained above may not converge in a finite number of steps. We illustrate
this with a simple example.

Example 4 (The FDA algorithm may not terminate in a finite number of steps). Con-
sider the following simple problem with three students and three schools, each with a
quota of 1:

�a �b �c
3 1�2

���

1�2 3
���
���

P1 P2 P3

a a b

b c a

c b c

Step 1. Students 1 and 2 apply to school a, and 1
2 of each is tentatively admitted

(while 1
2 of each is rejected), since they have the same priority. Student 3 applies to b

and is tentatively admitted.
Step 2. The rejected 1

2 of student 2 next applies to school c and is tentatively admit-
ted. The rejected 1

2 of student 1 applies to school b, where he has higher priority than
the currently admitted student 3. Now 1

2 of student 3 is rejected and 1
2 of student 1 is

tentatively admitted.
Step 3. The rejected 1

2 of student 3 applies to a, where he has higher priority than
both student 1 and student 2. As a result, 1

2 of student 3 is tentatively admitted whereas
1
4 of each of students 1 and 2 are rejected.

Step 4. The rejected 1
4 of student 2 next applies to school c and is tentatively admitted

(in addition to the previously admitted 1
2 of him). The rejected 1

4 of student 1 applies to
school b, where he has higher priority than the currently admitted 1

2 of student 3. Now
1
4 of student 3 is rejected and 1

4 of student 1 is tentatively admitted.
���

As the procedure goes on, rejected fractions of student 3 by school b continue to ap-
ply to school a in turn, leading fractions of student 3 to accumulate at a and, at the same
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time, causing (a smaller fraction of) student 1 to be rejected by school a at each applica-
tion. This, in turn, leads student 1 to apply to school c and cause (the same fraction of)
3 to be further rejected. Consequently, all fractions of student 3 accumulate at school a
and all those of student 1 accumulate at school b.

Step ∞. The sum of the admitted fractions of student 3 at school a is 1, which is the
sum of the geometric series 1

2 + 1
4 + 1

8 +· · · . The sum of the admitted fractions of student
1 at school b is 1. The sum of the admitted fractions of student 2 at school c is 1. ♦

Even though the FDA algorithm may not terminate in finite time, the above exam-
ple suggests that its outcome can be computed without getting lost in infinite loops by
examining the rejection cycles that might form throughout the steps of the algorithm.

To define the finite version of the FDA algorithm, we need to define a few new con-
cepts. We first define a binary relation between students. Let i� j ∈ I and c ∈ C. Suppose
that at some step s of the FDA algorithm, some fraction of student i is rejected by school
c, while he still has some fraction not rejected by c at this step. On the other hand, sup-
pose also that at step s, school c temporarily holds some fraction of some other student
j who has not been rejected by c until step s (i.e., not rejected before or at step s). Then
we say that i is partially rejected by c in favor of j and denote it by j ↪→c i. At a later step
r > s in the algorithm, if either some fraction of j is rejected by c or all fractions of i get
rejected by c, then the above relationship does not hold at step r or at any later step. In
this case, we say that j ↪→c i is no longer current.

A rejection cycle is a list of distinct students and schools (i1� c1� � � � � im� cm) such that
at a step of the algorithm, we have

i1 ↪→c1 i2 ↪→c2 · · · ↪→cm−1 im ↪→cm i1

and all partial rejection relations are current.
Observe that at the moment the cycle occurs, student i1 is partially rejected by school

cm in favor of student im. We know that school c1 has not rejected student i1 at any frac-
tion; thus, the next available choice for student i1 is c1. Therefore, student i1 applies
“again” to school c1. As a result, student i2 is partially rejected again, and the same se-
quence of partial rejections reoccur. That is, the algorithm cycles. We refer to this cycle
as a current rejection cycle as long as all partial rejection relations are current, and we
say that i1 induces this rejection cycle.

Nonetheless, this cycle either converges to a tentative random matching in the limit
or, sometimes, in a finite number of steps when some partial rejections turn into full
rejections. Thus, once a cycle is detected, it can be solved as a system of linear equations.

We make the following observation, which will be crucial in the definition of the
“formal” FDA algorithm.

Observation 1. If a rejection cycle

i1 ↪→c1 i2 ↪→c2 · · · ↪→cm−1 im ↪→cm i1
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is current in the FDA algorithm, then for each student i�, the best school that has not
rejected a fraction of him is school c�; that is, whenever a fraction of i� is rejected, he next
makes an offer to school c�.

The outcome of the FDA algorithm described above converges (as the number of
steps approaches infinity) to the outcome of the following finite FDA algorithm.

The FDA Algorithm. Step s. Fix some student i1 ∈ I who has an unassigned fraction
from the previous step. He applies to the next best school that has not yet rejected any
fraction of him. Let c1 be this school. Two cases are possible:

(a) If the student i1 induces a rejection cycle

i1 ↪→c1 i2 ↪→c2 · · · ↪→cm−1 im ↪→cm i1�

then we resolve it as follows: For im+1 ≡ i1 and c0 ≡ cm, c1 tentatively accepts the
maximum possible fraction of i1 such that each school c� tentatively accepts

• all fractions of applicants tentatively accepted in the previous step except the
ones belonging to the lowest-priority level,

• the total rejected fraction of student i� from school c�−1, and

• an equal fraction (if possible) among the lowest-priority applicants tenta-
tively accepted in the previous step (including student i�+1)

so that it does not exceed its quota qc� .

(b) If i1 does not induce a rejection cycle, school c1 considers its tentatively assigned
applicants from the previous step together with the new fraction of i1. It tenta-
tively accepts these fractions starting from the highest priority. In case its quota is
filled in this process, it tentatively accepts an equal fraction (if possible) of all ap-
plicants belonging to the lowest accepted priority level. It rejects all outstanding
fractions.

We continue until no fraction of a student remains unassigned. At this point, we
terminate the algorithm by making all tentative random assignments permanent.

We resolve part (a) of the algorithm by reducing the infinite convergence problem
demonstrated in Example 4 to a linear equation system. This is demonstrated in Ap-
pendix A, Example 8. We explain this resolution in Appendix B, the proof of Proposi-
tion 3, for the general case.

Since we have defined the algorithm in a sequential fashion, it is not clear whether
the procedure is independent of the order of the proposing students or which cycle is
chosen to be resolved. Corollary 1 (below) shows that this statement is true and, thus,
its outcome is unique.14 We refer to the mechanism whose outcome is found through
the above FDA algorithm as the FDA mechanism.

14This result is analogous to the result regarding the deferred-acceptance algorithm of Gale and Shapley,
which can also be executed by students making offers sequentially instead of simultaneously (McVitie and
Wilson 1971).
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5.2 Properties of the FDA mechanism

We next present some desirable properties of the FDA mechanism and its iterative
algorithm.

Proposition 3. The FDA algorithm is well defined and converges to a random matching
in a finite number of steps.

The proof of Proposition 3 is given in Appendix B.

Theorem 2. An FDA outcome is strongly ex ante stable.

Proof. Let π be the FDA algorithm’s outcome according to some proposal order of stu-
dents. We first show that this outcome is a well defined random matching. Suppose not.
Then there exists a student i who is not matched with probability 1 at π. Thus, π is sub-
stochastic and there exists some school c that is undermatched at π, i.e.,

∑
j πj�c ≤ qc .

At some step, student i makes an offer to c and some fraction of him is rejected by it, as
he ends up with some rejected probability at the end of the algorithm. However, school
c only rejects a student if its quota is tentatively filled. Moreover, once it is tentatively
filled, it never is undermatched. However, this contradicts the earlier conclusion that its
quota was not filled at π. Thus, π is a bi-stochastic matrix, i.e., it is a random match-
ing. Next we show that π is strongly ex ante stable. Since in the algorithm, (i) a student
fraction always applies to the best school that has not yet rejected him and (ii) when
its quota is filled, a school always prefers higher-priority students to the lower-priority
students, a student cannot have ex ante justified envy toward a lower-priority student.
If π is not strongly ex ante stable, then it should be the case that there is ex ante dis-
crimination among equal-priority students, i.e., there are i ∼c j for some school c such
that c Pi a, πi�a > 0, and yet πi�c < πj�c . Consider the first step after which the (tentative)
random-matching vector of school c does not change. At this step, some students apply
to school c, and in return some fractions of some students with equal priority i′ and j′
are tentatively accepted and some are rejected. The only way πi′�c < πj′�c is if no fraction
of i′ is ever rejected by school c. Thus, πi′�a′ = 0 for all a′ ≺i′ c. This contradicts the claim
that such a student i exists. �

Our next result states that from a welfare perspective the FDA outcome is the most
appealing strongly ex ante stable matching. This finding can also be interpreted as the
random analogue of Gale and Shapley’s celebrated result on the constrained Pareto op-
timality of the student-proposing deferred-acceptance outcome (among stable match-
ings) for the deterministic two-sided matching context.

Theorem 3. An FDA outcome ordinally dominates all other strongly ex ante stable ran-
dom matchings.

The proof of Theorem 3 is also given in Appendix B. Theorem 3 implies that the
FDA mechanism is well defined, i.e., its outcome is unique and independent of the or-
der of students making applications in the algorithm. We invoke a direct proof of this
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theorem. We can also prove the existence of a student-optimal strongly ex ante stable
random matching through Alkan and Gale’s (2003) two-sided schedule matching ap-
proach. Alkan and Gale introduce a two-sided matching model where each worker can
be matched to each firm in fractions (referring to time or probabilities). They show that a
worker-optimal stable matching exists when the choice functions of agents over sched-
ule matchings satisfy a standard substitutability requirement and a consistency require-
ment. It is easy to define an isomorphic Alkan–Gale problem for every school-choice
problem of ours in which student and school-choice functions over schedule match-
ings are both substitutable and consistent such that a school-choice random match-
ing is strongly ex ante stable if and only if its isomorphic Alkan–Gale schedule match-
ing is Alkan–Gale stable. Erdil and Kojima (2007) follow a similar approach to the one
described.

Corollary 1. The FDA algorithm’s outcome is independent of the order of students mak-
ing offers or the rejection cycle chosen to be resolved if more than one is encountered si-
multaneously and, thus, it is unique.

6. Ex ante stable school choice

The FDA mechanism satisfies ex ante stability but sacrifices some efficiency at the ex-
pense of finding a random matching that treats equal-priority students fairly. Therefore,
we next address how we can achieve more efficient outcomes without sacrificing fair-
ness “too much,” i.e., by relaxing equal treatment of equal-priority students and thereby
allowing for ex ante discrimination but maintaining ex ante stability and equal treat-
ment of equals.

By Proposition 2, we know that there is no mechanism that satisfies ordinal effi-
ciency and ex ante stability. Thus, we define the following constrained efficiency con-
cept: A mechanism ϕ is constrained ordinally efficient within its class if there exists no
mechanism ψ in the same class as ϕ and no problem [P��] such that ψ[P��] ordinally
dominates ϕ[P��].

We now characterize constrained ordinally efficient mechanisms within the class of
ex ante stable mechanisms. First, we restate a useful result due to Bogomolnaia and
Moulin (2001) that characterizes ordinal efficiency. Fix a problem [P��]. For any ran-
dom matching π ∈X , we say that i ex ante envies j for b due to c if πj�b > 0, πi�c > 0, and
b Pi c.15 We denote it as

(i� c)�π (j�b)�

A stochastic improvement cycle Cyc = (i1� c1� � � � � im� cm) at π is a list of distinct student–
school pairs (i�� c�) such that

(i1� c1)�
π (i2� c2)�

π · · ·�π (im� cm)�π (i1� c1)�

15Under this definition, a student will ex ante envy himself if he is assigned fractions from two schools.
This is different from the improvement relationship defined by Bogomolnaia and Moulin. Unlike them,
we do not rule out this possibility and use it for the constrained efficiency characterization within ex ante
stable random matchings.
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(We use modulo m whenever it is unambiguous for subscripts, i.e., m+ 1 ≡ 1.) Let 0 <
w ≤ min�∈{1�����m}πi��c� . Cycle Cyc is satisfied with fraction w at π if for all � ∈ {1� � � � �m},
a fraction w of the school c�+1 is assigned to student i� additionally and a fraction w
of school c� is removed from his random matching, while we do not change any of the
other matching probabilities at π. Formally, we obtain a new random matching ρ ∈ X
such that for all i ∈ I and c ∈ C,

ρi�c =

⎧⎪⎨
⎪⎩
πi�c +w if i= i� and c = c�+1 for some � ∈ {1� � � � �m}
πi�c −w if i= i� and c = c� for some � ∈ {1� � � � �m}
πi�c otherwise�

The following is a direct extension of Bogomolnaia and Moulin’s result to our domain
and our definition of the ex ante envy relationship. Therefore, we skip its proof.

Proposition 4 (Bogomolnaia and Moulin 2001). A random matching is ordinally effi-
cient if and only if it has no stochastic improvement cycle.

6.1 Ex ante stability and constrained ordinal efficiency

Proposition 4 suggests that if a random matching has a stochastic improvement cycle,
then one can obtain a new random matching that ordinally dominates the initial one
simply by satisfying this stochastic improvement cycle. Observe, however, that satisfy-
ing such a cycle may induce ex ante justified envy at the new random matching. Con-
sequently, given that our goal is to maintain ex ante stability, to improve the efficiency
of an ex ante stable random matching, we can only work with those stochastic improve-
ment cycles that respect the ex ante stability constraints. For this purpose we introduce
an envy relationship as follows.

We say that i ex ante top-priority schoolwise envies j for b due to c, and we denote it
as

(i� c)�π (j�b)

if (i� c)�π (j�b) and i�b k for all (k�a) ∈ I ×C such that (k�a)�π (j�b). That is, i envies
j for b due to c, and i is the highest-priority student who envies j for b.16

An ex ante stable improvement cycle (i1� c1� � � � � im� cm) at π is a list of distinct
student–school pairs (i�� c�) such that

(i1� c1)�π (i2� c2)�π · · · �π (im� cm)�π (i1� c1)�

We state our main result of this subsection below. Although one direction of this
result is easy to prove, the proof of the other direction needs extra attention to detail. Our
result generalizes Proposition 4 (stated for the equal priority domain by Bogomolnaia
and Moulin), and a result by Erdil and Ergin (2008) (stated for the deterministic domain)
to the probabilistic school-choice framework.

16Like the ex ante envy relationship, a student will ex ante top-priority schoolwise envy himself if he is
assigned fractions from two schools, and for the better of the two schools, he is among the highest-priority
students ex ante envying.
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Proposition 5. An ex ante stable random matching ρ is not ordinally dominated by any
other ex ante stable random matching if and only if there is no ex ante stable improvement
cycle at ρ.

The proof of Proposition 5 is given in Appendix B.

6.2 Ex ante stable fraction trading

Motivated by Proposition 5, we shall use the FDA outcome to obtain a constrained or-
dinally efficient ex ante stable matching. Our second proposal roughly rests on the fol-
lowing intuition: Since the outcome of the FDA mechanism is ex ante stable, if we start
initially from this random matching and iteratively satisfy ex ante stable improvement
cycles, we should eventually arrive at a constrained ordinally efficient ex ante stable ran-
dom matching. Though intuitive, this approach need not guarantee equal treatment of
equals. Therefore, in what follows, we will also need to pay attention to the ex ante stable
improvement cycles that are to be selected.

Our second proposal, the fractional deferred acceptance and trading (FDAT), starts
from the FDA outcome and satisfies all ex ante stable improvement cycles simultane-
ously so as to preserve equal treatment of equals to obtain a new random matching. It
iterates until there are no new ex ante stable improvement cycles. Before formalizing
this procedure, to fix ideas and point out some potential difficulties, we first illustrate
our approach with an example.

Example 5 (How does the FDAT algorithm work?). We use the same problem as in Ex-
ample 3.

Step 0. We have found the FDA outcome in Example 3 as

ρ1 =

a b c d

1 11
12

1
12 0 0

2 2
3 0 1

3 0

3 5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6 0 1

6

Step 1. We form top-priority schoolwise envy relationships as

(1� a)�ρ1
(3� b)� (6� b)� (1� b)

(2� a)�ρ1
(3� c)� (4� c)� (5� c)� (2� c)

(3� f )�ρ1
(5� d)� (6� d)� (3� d) ∀f ∈ {a�b� c}

(3� f )�ρ1
(2� c)� (4� c)� (5� c)� (3� c) ∀f ∈ {a�b}

(3� a)�ρ1
(1� b)� (6� b)� (3� b)

(5� d)�ρ1
(2� c)� (3� c)� (4� c)� (5� c)

(6� b)�ρ1
(3� d)� (5� d)� (6� d)�
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There is only one ex ante stable improvement cycle:

(3� c)�ρ1
(5� d)�ρ1

(3� c)�

We satisfy this cycle with the maximum possible fraction 1
3 and obtain

ρ2 =

a b c d

1 11
12

1
12 0 0

2 2
3 0 1

3 0

3 5
12

1
12 0 1

2
4 0 0 1 0

5 0 0 2
3

1
3

6 0 5
6 0 1

6

Step 2. There are no new top-priority schoolwise envy relationships at ρ2, and no
new ex ante stable improvement cycles; thus, ρ2 is the outcome of the FDAT algorithm. ♦

The main difficulty with this approach is determining which ex ante stable improve-
ment cycle to satisfy if there are many. This choice may cause fairness violations regard-
ing the equal treatment of equals or there can be many ways to find a solution respect-
ing equal treatment of equals. Thus, the outcome of the FDAT algorithm as explained
above is not uniquely determined. Furthermore, there are also legitimate computational
concerns in finding more than one ex ante stable improvement cycle at a time.17 We
overcome these fairness and computational issues by adapting to our domain a frac-
tional trading algorithm, which was introduced in the operations research literature by
Athanassoglou and Sethuraman (2011). It is referred to as the constrained-consumption
algorithm and was introduced to obtain ordinally efficient allocations in house alloca-
tion problems with existing tenants (Abdulkadiroğlu and Sönmez 1999). Similar algo-
rithms were also previously introduced by Yılmaz (2009, 2010). Our version, the ex ante
stable consumption (EASC) algorithm, is embedded in Step s ≥ 1 of the FDAT algorithm
as a way to satisfy ex ante stable improvement cycles simultaneously and equitably. It is
explained in detail in Appendix D.

We state the FDAT algorithm formally as follows.

The FDAT Algorithm. Step 0. Run the FDA algorithm. Let ρ1 be its random matching
outcome.

���

Step s. Let ρs ∈ X be found at the end of Step s − 1. If there is an ex ante stable
improvement cycle, run the EASC algorithm. Let ρs+1 be the outcome and continue
with Step s+ 1. Otherwise, terminate the algorithm with ρs as its outcome.

17In a worst-case scenario, the number of ex ante stable improvement cycles at an ex ante stable match-
ing grows exponentially with the number of students.
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We refer to the mechanism whose outcome is found through this algorithm as the
FDAT mechanism.

In Appendix E, Example 9, we illustrate the EASC algorithm to show how the for-
mal FDAT algorithm works for the problem in Example 5. Although the execution of
the FDAT algorithm is obvious and simple in this example without the implementation
of the EASC algorithm in each step, for expositional purposes we reexecute it with the
embedded EASC algorithm.18

6.3 Properties of the FDAT mechanism

Proposition 6. The FDAT algorithm is well defined and converges to a random match-
ing in a finite number of steps.

Proof. We know that Step 0 of the FDA algorithm works in finite steps (by Proposi-
tion 3), as well as Step 1, the EASC algorithm (Athanassoglou and Sethuraman 2011).

Next, we prove that the number of steps in FDAT is finite. After each step t ≥ 1 of
the FDAT algorithm, at least one student i ∈ I leaves a school c ∈ C with ρt−1

i�c > 0 with 0

fraction and gets into better schools, i.e., ρti�c = 0 and
∑
aPic

ρti�a >
∑
aPic

ρt−1
i�a . (Otherwise,

the same ex ante stable improvement cycle of ρt−1
i�c would still exist at ρt , contradicting

that the EASC algorithm has converged at Step t.) Thus, the FDAT algorithm converges
in no more than |C||I| + 1 steps (including Step 0). �

Theorem 4. The FDAT mechanism is ex ante stable.

Proof. Consider each step of the FDAT algorithm.
In Step 0, the outcome of the FDA has no schoolwise justified envy toward a lower-

priority student by Theorem 2.
In Step 1, students in determined ex ante stable improvement cycles are made better

off (in an ordinal dominance sense), while others’ welfare is unchanged. Moreover, the
students who are made better off are among the highest-priority students who desire
a seat at the school where they receive a larger share. That is, for any student i with
ρ1
i�c > ρ

0
i�c , there is some school bwith c Pi b, and ρ1

i�b < ρ
0
i�b, and there is no student j �c i

such that ρ1
j�a > 0 for some school a with c Pj a. (Otherwise, i would not ex ante top-

priority schoolwise envy a student k with ρ0
k�c > 0 for c due to b, since j would do that

due to a or a worse school. Moreover, since ρ0 is ex ante stable, ρ0
i�c = 0. The last two

statements would imply (i� c) /∈ A(ρ0), which in turn implies that ρ1
i�c = 0.) Hence, ρ1 is

ex ante stable.
We repeat this argument for each step. Hence, when the algorithm is terminated, the

outcome is ex ante stable. �

Our next result states that from a welfare perspective, the FDAT outcome is among
the most appealing ex ante stable random matchings. Improving upon this matching

18In general, without the use of the EASC algorithm or a similar well defined technique, Step s ≥ 1 of the
FDAT algorithm may not be well defined.



Theoretical Economics 10 (2015) A theory of school-choice lotteries 567

would necessarily lead to ex ante justified envy. This finding can also be interpreted as
the random analogue of the mechanism proposed by Erdil and Ergin (2008) for a deter-
ministic school-choice model with random tie-breaking. In that context, the outcome
of the Erdil–Ergin mechanism has been shown to be constrained ex post Pareto efficient
among ex post stable matchings.

Theorem 5. The FDAT mechanism is constrained ordinally efficient within the ex ante
stable class.

Proof. Suppose that the FDAT outcome ρ is ordinally dominated by an ex ante stable
random matching for some problem P . By Proposition 5, there exists an ex ante stable
improvement cycle at P . Thus, this contradicts the fact that ρ is the FDAT outcome. �

Theorem 6. The FDAT mechanism treats equals equally.

Proof. The FDA mechanism treats equals equally as it is strongly ex ante stable (by
Theorem 2). Thus, two students with the same preferences and priorities have exactly
the same random matching vector under the FDA outcome ρ0. Let i, j be two equal
students. Then ρ0

i = ρ0
j and (i� c) ∈ A(ρ0) if and only if (j� c) ∈ A(ρ0) for any school c ∈ C.

By Athanassoglou and Sethuraman (2011), the EASC algorithm treats equals equally. The
last two statements imply that outcome of Step 1: ρ1 treats equals equally. We repeat
this argument iteratively for each step, showing that the FDAT outcome treats equals
equally. �

6.4 The FDAT mechanism vs. probabilistic serial mechanism

The way the FDA and FDAT mechanisms treat equal-priority students resembles the
probabilistic serial (PS) mechanism Bogomolnaia and Moulin (2001) proposed for the
“random assignment” problem where there are no exogenous student priorities. Loosely
speaking, within any given step of the PS algorithm, those students who compete for
the available units of the same object are allowed to consume equal fractions until the
object is exhausted. Similarly, within any given step of the FDA algorithm, those equal-
priority students who have applied to the same school are also treated equally in very
much the same way. Despite such similarity, the two procedures are indeed quite differ-
ent in general. The difference between the two algorithms comes from the fact that the
PS algorithm makes permanent random matchings within each step, whereas the FDA
algorithm always makes tentative random matchings until the last step. We can expect
to have some efficiency loss due to FDA’s strong ex ante stability property, while the PS
mechanism is not strongly ex ante stable. Even if FDA and PS outcomes are different,
one may think that starting from the FDA outcome, fractional trading will somehow es-
tablish the equivalence with the PS outcome. However, as the following example shows,
the PS outcome does not necessarily ordinally dominate the FDA outcome; hence, the
FDAT outcome, which ordinally dominates the FDA outcome, and the PS outcome are
not the same either.
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Example 6 (Neither FDA nor FDAT is equivalent to the PS mechanism when all students
have the same priority). Assume there are four students {1�2�3�4} and four schools
{a�b� c�d} each with a quota of 1. All students have equal priorities at all schools. The
students’ preferences are given as

P1 P2 P3 P4

d a d c

c d c b

a c b d

b b a a

The FDA, FDAT, and PS outcomes are

ρFDA =

a b c d

1 1
3 0 1

3
1
3

2 2
3 0 0 1

3

3 0 1
3

1
3

1
3

4 0 2
3

1
3 0

ρFDAT =

a b c d

1 0 0 1
2

1
2

2 1 0 0 0

3 0 1
3

1
6

1
2

4 0 2
3

1
3 0

ρPS =

a b c d

1 1
6

1
6

1
6

1
2

2 5
6

1
6 0 0

3 0 1
3

1
6

1
2

4 0 1
3

2
3 0

Observe that ρFDAT and ρPS are both ordinally efficient. Moreover, ρPS does not ordi-
nally dominate ρFDA (e.g., contrast student 2’s random matching vectors under ρFDA

2 vs.
ρPS

2 ). ♦

7. Simulations

We ran simulations to estimate the performance of the FDAT mechanism and contrast it
with those of the NYC/Boston deferred-acceptance algorithm with a single tie-breaking
lottery (DA henceforth) and Erdil and Ergin (2008) (EE henceforth) mechanisms in prob-
lems that approximately match the main characteristics of the Boston data from 2008 to
2011 (Abdulkadiroğlu et al. 2006). EE dominates DA, as it starts from a deterministic
DA outcome using some ex ante tie-breaking at each instance, and finds determinis-
tic stable improvement cycles randomly and satisfies them. There is no clear theoretical
efficiency comparison between FDAT and EE (or between FDAT and DA). FDAT is a con-
strained ordinally efficient mechanism within the ex ante stable class, while EE is a con-
strained ex post efficient mechanism within the ex post stable class. Ordinal efficiency
is a stronger efficiency notion; however, the ex post stable class is larger than the ex ante
stable class. Even in instances where the outcome of the EE is ex ante stable, FDAT may
not dominate it.
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In our simulations, we randomly generated 100 markets, each with |S| schools and |I|
students, and computed the corresponding outcomes of FDAT, DA, and EE, where 100
random tie-breaking priority orderings were additionally generated for the latter two
mechanisms. More specifically, we assumed that students were zoned in n neighbor-
hoods, |S|/n schools per each neighborhood. Students were grouped in these neigh-
borhoods such that |I|/n students were assumed to be living in each neighborhood.
Also, s students in each neighborhood were assumed to have elder siblings attending
high school, some attending a neighborhood school, and others a nonneighborhood
school. As in Boston, the priorities at each school were generated to prioritize the neigh-
borhood students with siblings attending the school first, nonneighborhood students
with siblings attending the school second, neighborhood students without siblings at
the school third, and nonneighborhood students without siblings attending the school
last. We generated student preferences using the following randomization process: Each
student had psn probability to first-rank a particular neighborhood school that a sib-
ling is attending, ps probability to first-rank a particular nonneighborhood school that
a sibling is attending, pn probability to first-rank a neighborhood school that a sibling
is attending, and the remaining probability was divided up equally for each nonneigh-
borhood school to determine its probability to be ranked first. If the student did not
have a sibling, then ps and psn were ignored; if the student had a sibling attending
a neighborhood school, then ps was ignored; and if the student had a sibling attend-
ing a nonneighborhood school, then psn was ignored when generating the first choice.
Once the first-choice school is randomly determined, the conditional probabilities for
the remaining schools were updated and then second choice was randomly generated.
The remaining choices were determined sequentially and randomly after updating the
probabilities for remaining schools after each selection. We chose the above preference
parameters roughly based on real preference summary statistics of Boston high school
applicants in years 2008–2011 (Abdulkadiroğlu et al. 2006).

The data suggested that 60% of the students have siblings in the system, although
we do not have data on how many of them are older siblings who generate sibling pri-
orities for the students at their schools. There were, on average, 26 schools and 2705
students per year applying for high school. Each school had neighborhood priority (ei-
ther with or without siblings) for 208 students on average, and there were, on average,
two schools located in each neighborhood. Based on the aggregate statistics, students
ranked a nonpriority school 64% of the time, a sibling’s nonneighborhood school 3% of
the time, a sibling’s neighborhood school 3% of the time, and a neighborhood school
without a sibling priority 30% of the time. Observe that the latter includes all students
and does not distinguish among student types with or without siblings. Also, we did not
have reliable data on quotas of schools. Our simulation statistics assumed that half of
the students with siblings have older siblings in high school (a total of 30%) so that 10%
of the students have older in-walk-zone siblings and 20% of the students have older sib-
lings attending nonneighborhood schools. Using a back-of-the-envelope calculation for
our simulations to approximately match the preference characteristics of data with our
preference generation process, we chose psn = 0�3, ps = 0�15, and pn = 0�15. We also
chose the number of schools comparable in size to the sample: we had |S| = 20 and
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Average fraction of students

FDAT f.o.s.d. DA DA f.o.s.d. FDAT FDAT = DA Not comparable Overall

Average fraction: 70�7% (3�4%) 1�4% (0�8%) 19�5% (2�7%) 8�5% (2�7%) 100%

Average fractions of students getting in their various choices in each category

Choices FDAT DA FDAT DA FDAT = DA FDAT DA FDAT DA

1st 78�9% 52�6% 47�6% 56�0% 100% 57�0% 51�4% 80�7% 61�7%
2nd 15�5% 28�5% 51�2% 43�2% 27�4% 31�1% 14�0% 23�4%
3rd 4�8% 11�2% 1�1% 0�8% 13�5% 12�1% 4�5% 9�0%
4th 0�8% 4�5% 2�0% 3�5% 0�7% 3�5%
5th 0�1% 1�8% 0�2% 1�1% 0�1% 1�4%
6th 0�8% 0�2% 0�6%
7th 0�3% 0�1% 0�2%
8th 0�1% 0�1% 0�1%
9th 0�1% 0�0%

Average fraction of justifiably ex ante envious students in DA: 0�08% (0�48%)

Table 1. Comparison of FDAT with DA in the simulations (the sample standard errors of the

fractions of students are given in parentheses after the averages).

n = 10 neighborhoods, so that there were two schools per neighborhood. However, to
have a manageable simulation (as we ran DA and EE 10,000 times, and ran FDAT 100
times), we chose |I| = 200 total students, hence, 20 students per walk zone instead of
208. We report the results of these simulations below.19

Tables 1 and 2 show the average allocation of different types of students in the sim-
ulations. Table 1 compares the DA outcome with that of FDAT. Although there is no
domination relationship between the two mechanisms in theory, FDAT does extremely
well for almost all students with respect to DA. The first row in Table 1 shows the average
proportion of students for whom FDAT first-order stochastically dominates (f.o.s.d. for
short) DA and DA f.o.s.d. FDAT. DA and FDAT outcomes are the same and there is no
comparison with f.o.s.d. among the two outcomes. A supermajority of students, 70�7%,
prefer FDAT over DA (with a low standard error of 3�4%). Among these students, the
fraction of students receiving their first-choice schools is 78�9%, while this fraction is
52�6% under DA. While only 1�4% prefer DA over FDAT (with a standard error of 0�8%),
the average fractions of students being assigned to their various choices are very similar
under both mechanisms and only slightly favorable for the DA. The probability for the
first two choices is 98�8% for FDAT and 99�2% for DA. On the other hand, the students
who get the same outcome under FDAT and DA always get their first choices, and these
students comprise 19�5% of the whole sample (with a standard error of 2�7%). For 8�5%
of the sample, the FDAT and DA outcomes are not comparable in the f.o.s.d. sense (with
a standard error of 2�7%), and the average allocation probabilities for their choices are
similar.

19The reported results are highly robust to changes in in-walk-zone/out-of-walk-zone sibling ratios.
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Average fraction of students

FDAT f.o.s.d. EE EE f.o.s.d. FDAT FDAT = EE Not comparable Overall

Average fraction: 36�5% (4�6%) 18�1% (3�8%) 24�8% (2�9%) 20�6% (3�2%) 100%

Average fractions of students getting in their various choices in each category

Choices FDAT EE FDAT EE FDAT = EE FDAT EE FDAT EE

1st 82�9% 74�0% 65�7% 77�7% 100% 66�9% 71�2% 80�7% 80�5%
2nd 14�6% 19�8% 25�4% 18�3% 19�6% 17�9% 14�0% 14�3%
3rd 2�1% 3�8% 7�5% 3�6% 11�6% 7�3% 4�5% 3�5%
4th 0�3% 1�5% 1�3% 0�5% 1�8% 2�2% 0�7% 1�1%
5th 0�5% 0�1% 0�1% 0�9% 0�1% 0�4%
6th 0�2% 0�3% 0�1%
7th 0�1% 0�1% 0�0%

Average fraction of justifiably ex ante envious students in EE: 0�03% (0�16%)

Table 2. Comparison of FDAT with EE in the simulations (the sample standard errors of the

fractions of students are given in parentheses after the averages).

The second table reports the results of similar comparisons between FDAT and EE.
Note that in theory, there is no overall domination relation between these mechanisms.
Students seem overall much better off under EE with respect to DA, but FDAT outcomes
appear to be more favorable for a higher percentage of students than EE: 36�5% of the
students unambiguously prefer FDAT over EE (with a standard error of 4�6% for the sam-
ple) while only 18�1% of the students prefer EE over FDAT (with a standard error of 3�8%).
Of all the students, 24�8% receive the same allocation under both mechanisms, at which
each of them receives his first choice with probability 1. For 20�6% of the students, the
outcomes are not comparable with respect to f.o.s.d. (with a standard error of 3�2% for
the sample).

Although neither EE nor DA is ex ante stable, we observe a very small percentage of
agents having ex ante justified envy. Hence, under these preferences and priorities, both
mechanisms almost behave like ex ante stable mechanisms (the last row in both tables).
Although in theory, there can be stable and more efficient mechanisms than FDAT, as
the two stability concepts seem to be close under realistic simulations, FDAT’s superior
performance with respect to both mechanisms is not surprising.

8. Incentives

Strategic issues regarding lottery matching mechanisms, in general, have not been well
understood. A mechanism is strategy-proof if, for each agent, his random matching
vector obtained through the mechanism via his truth-telling behavior ordinally dom-
inates or is equal to the one obtained via his revelation of any untruthful ranking. In
the context of one-sided matching (i.e., the special case of our model where all stu-
dents have equal priority at all schools), strategy-proofness is essentially incompatible
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with ordinal efficiency. Therefore, notwithstanding its appeal in terms of various prop-
erties including ordinal efficiency, the probabilistic serial mechanism of Bogomolnaia
and Moulin (2001) is not strategy-proof. In the context of school choice, due to the well
known three-way tension among stability, efficiency, and incentives, strategy-proof and
stable mechanisms are necessarily inefficient (cf. Erdil and Ergin 2008, Abdulkadiroğlu
et al. 2009, and Kesten 2010). The current NYC/Boston mechanism, which is strategy-
proof, is the most efficient stable mechanism (Gale and Shapley 1962) when priorities
are strict. However, in the school-choice problem with weak priorities, it is not even
ex post efficient within the ex post stable class of mechanisms. Moreover, it has been
shown empirically (Abdulkadiroğlu et al. 2009) and theoretically (Kesten 2010) to be sub-
ject to significant and large welfare losses. As a result of this observation, nonstrategy-
proof mechanisms have been proposed and advocated in the recent literature on school
choice (cf. Erdil and Ergin 2008, Kesten 2010, and Abdulkadiroğlu et al. forthcoming).

Given the negative results outlined above regarding different fairness and efficiency
properties, it is probably not surprising that the two mechanisms proposed in this paper
are not strategy-proof. This observation follows from the following two impossibility
results regarding the existence of strategy-proof mechanisms in our problem domain.
We state these observations in the next two remarks. The first remark is a reformulation
of a result due to Bogomolnaia and Moulin (2001) for the present context.

Remark 1. When |I| ≥ 4, there is no strategy-proof, ex ante stable, and constrained or-
dinally efficient mechanism that also respects equal treatment of equals.

The next remark shows the incompatibility between strategy-proofness and strong
ex ante stability. Its proof is given in Appendix B.

Remark 2. When |I| ≥ 3, there is no strategy-proof and strongly ex ante stable
mechanism.

However, in sufficiently large markets, nonstrategy-proof mechanisms of small mar-
kets can turn out to be strategy-proof (cf. Kojima and Manea 2010, Azevedo and Bud-
ish 2013). Indeed, in a large market with diverse preference types of students, FDA is
strategy-proof. We prove this result in the following subsection.

8.1 Incentives under FDA in a large market

A continuum school-choice problem is denoted by a seven-tuple [I�T�τ�C�q�P��],
where I is a Lebesgue-measurable continuum set of students, each of whom is seek-
ing a seat at a school; T is a finite set of priority types of students; τ : I → T is a type-
specification function for students; C is a finite set of schools; q= (qc)c∈C is a quota vec-
tor of schools such that qc ∈ Z++ is the maximum Lebesgue measure of students who
can be assigned to school c; P = (Pi)i∈I is a strict preference profile for students; and
�= (�c)c∈C is a weak priority structure for schools over T . Let |J| denote the Lebesque
measure of student subset J ⊆ I. Let |I| > 0.20 We assume that there are enough spots

20See Che and Kojima (2010) for a foundational exercise in modeling continuum matching problems.
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for all students, that is,
∑
c∈C qc = |I|. We also assume that if t ∈ τ(I), then τ−1(t) has

a positive Lebesgue measure, |τ−1(t)| > 0. In particular, for all possible preference re-
lations Pj over schools, there exists a positive Lebesgue measure of students in τ−1(t)

with the same preference relation Pj , that is, |{i ∈ τ−1(t) :Pi = Pj}|> 0 for all t ∈ τ(I) and
preference relation Pj .21 The ordinally Pareto-dominant strongly ex ante stable random
matching still exists in this framework for each problem.22 Let FDA be defined through
the mechanism that picks this random matching. In this framework, we can state the
following result.

Theorem 7. In continuum school-choice problems as specified above, FDA is strategy-
proof; that is, for any student, it is a weakly ordinally dominant strategy to reveal his true
preferences.23

Proof. Suppose a student i of type t, instead of revealing his true preference Pi, re-
veals some other student’s preference Pj , where j is also of type t (for every manipu-
lation of student i, such a student j exists by the assumptions). Now the outcome of
the FDA mechanism is the same under both problems, with truthful revelation of i and
with i pretending to be a student identical to j. This is true as the set of strongly ex
ante stable random matchings will not change without changing the measures of types
of agents existing in the problem. Suppose ρ is this outcome. All we need to show is
that ρi ordinally dominates ρj under Pi or ρi = ρj (suppose we denote this relation-
ship by ρi ≥i ρj). We assume that a1 Pi a2 Pi · · · Pi an denotes the preference relation
of i. There exists some ak with k ≥ 1 such that ρi�ak > 0. Suppose ak is the lowest
ranked school in Pi with this property. Then by elimination of ex ante discrimination
among equal priority students i and j under ρ, we have ρi�a� ≥ ρj�a� for all � < k. There-

fore, for all � < k,
∑�
m=1 ρi�am ≥ ∑�

m=1 ρj�am . Moreover, we have
∑k
m=1 ρi�am = 1. Hence,∑�

m=1 ρi�am ≥ ∑�
m=1 ρj�am for all �, showing that ρi ≥i ρj .24 �

It is known that PS and DA are equivalent in a continuum economy when school
priorities are the same over all students (cf. Che and Kojima 2010). One can wonder
whether the above result is a corollary of a possible equivalence between FDA and DA
mechanisms in the continuum model. A counterexample, however, shows that this is
not the case. Indeed, FDA is fairer than DA and, hence, potentially less efficient. Such
an equivalence between FDAT and DA does not hold either.

21Note that we do not assume that all prioritizations of different preference types are possible in a given
problem. The possible prioritizations are given through the fixed priority profile �.

22Establishing this fact requires a little more formal work, but we skip it for brevity and refer our reader
to the corresponding result in a finite problem.

23It can be shown that there is no strategy-proof and constrained-efficient ex ante stable mechanism that
also satisfies equal treatment of equals in the continuum school-choice problems. Hence, FDAT is also not
strategy-proof in such a model.

24It can be shown that there is no strategy-proof and constrained-efficient ex ante stable mechanism that
also satisfies equal treatment of equals in the continuum school-choice problems. Hence, FDAT is also not
strategy-proof in such a model.
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Example 7. Consider a continuum economy where there are three schools a, b, c, with
qa = qb = 1, and qc = 1 + 4δ for δ > 0. All students have equal priority at all schools.
There are six types of students with positive measure partitioned as I1, I2, I3, I4, I5, I6

with preferences

P1 P2 P3 P4 P5 P6

a b a b c c

b a c c a b

c c b a b a

for all students i ∈ Ii for all i ∈ {1�2� � � � �6}. These type sets have measures |I1| = 2,
|I2| = 1, and |I3| = |I4| = |I5| = |I6| = δ. The DA outcome of this problem is equal to
the PS outcome as proven by Che and Kojima (2010). DA, FDA, and FDAT outcomes are
given as

ρDA =

a b c

1 1
2+δ

1
(2+δ)(3+δ)

2+4δ+δ2

(2+δ)(3+δ)
2 0 4+δ

(2+δ)(3+δ)
2+4δ+δ2

(2+δ)(3+δ)
3 1

2+δ 0 1+δ
2+δ

4 0 4+δ
(2+δ)(3+δ)

2+4δ+δ2

(2+δ)(3+δ)
5 0 0 1
6 0 0 1

ρFDA =

a b c

1 1
3+δ

1
3+δ

1+δ
3+δ

2 1
3+δ

1
3+δ

1+δ
3+δ

3 1
3+δ 0 2+δ

3+δ
4 0 1

3+δ
2+δ
3+δ

5 0 0 1
6 0 0 1

ρFDAT =

a b c

1 2
3(3+δ)

1
3(3+δ)

1+δ
3+δ

2 0 2
3+δ

1+δ
3+δ

3 1
3+δ 0 2+δ

3+δ
4 0 1

3+δ
2+δ
3+δ

5 0 0 1
6 0 0 1

for all students i ∈ Ii.
Hence ρFDA �= ρDA �= ρFDAT �= ρFDA for generic δ > 0. ♦

9. Concluding comments

In this paper, we have established a framework that generalizes one-to-many two-sided
and one-sided matching problems. Such a framework enables the mechanism designer
to achieve strong and appealing ex ante efficiency properties when students are en-
dowed with ordinal preferences as exemplified in the pioneering work of Bogomolnaia
and Moulin (2001). Alternatively, fairness considerations play a crucial role in the de-
sign of practical school-choice mechanisms since school districts are vulnerable to pos-
sible legal action resulting from a violation of student priorities. We have formulated
two natural and intuitive ex ante fairness notions called strong ex ante stability and ex
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ante stability, and have shown that they are violated by prominent school-choice mech-
anisms such as the current Boston/NYC mechanism. We have proposed two mecha-
nisms that stand out as attractive members of their corresponding classes. Our propos-
als are practically applicable and can be roughly described to families similarly to the
way one would describe the usual DA algorithm, the difference being that, in contrast
to the current practice, our proposals defer the lottery phase to after all the preference
and priority information about students has been processed to compute all possible
assignment chances of each student to each school.

The research on school-choice lotteries is a relatively new area in market design the-
ory, and there are many remaining open questions. One important question is about the
characterization of ex post stability when matchings are allowed to be random. Similar
to the results we have established for strong ex ante stability (Theorem 3) and ex ante
stability (Theorem 5), a characterization of constrained ordinally efficient and ex post
stable random matchings currently remains an important future issue.

Appendix A: How does the FDA algorithm work when

there is a rejection cycle?

Example 8 (How does the finite FDA algorithm work?). Assume there are four students
{1�2�3�4} and four schools, {a�b� c�d} each with a quota of 1. The priorities and prefer-
ences are given as

�a �b �c �d
4 1�2 2

���

2 3�4 1�3
��� 4

P1 P2 P3 P4

c a b b

b c c a

d b d
���

a d a
���

Students propose according to the order 1, 2, 3, 4.
Step 1. Student 1 applies to school c and is tentatively admitted.
Step 2. Student 2 applies to school a and is tentatively admitted.
Step 3. Student 3 applies to school b and is tentatively admitted.
Step 4. Student 4 applies to school b. The applicants of school b are students 3 and

4 (who have equal priority). Since applications exceed the quota, 1
2 of each of 3 and 4 is

rejected by b, while 1
2 of each of 3 and 4 is tentatively admitted.

Step 5. Student 3 has an outstanding fraction of 1
2 and applies to his next best

school, c. The applicants of c are student 1 with a whole fraction and student 3 with
fraction 1

2 . Each has equal priority at school c whose quota has been exceeded. Thus
1
2 of each of students 1 and 3 is tentatively admitted at school c, while 1

2 of student 1 is
rejected. Since student 1 is partially rejected in favor of student 3 by c, we have 3 ↪→c 1.

Step 6. Student 1 has an outstanding fraction of 1
2 and applies to his next best

school, b. School b has three applicants, 1
2 of student 3, 1

2 of student 4, and 1
2 of stu-

dent 1. Since the quota of the school is exceeded and student 1 has the highest priority
among the three applicants, 1

2 of student 1 is tentatively admitted, while 1
4 of each of
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students 3 and 4 is tentatively admitted, and 1
4 of each of students 3 and 4 is rejected. We

have 1 ↪→b 4, and 1 ↪→b 3; hence, there is a rejection cycle (3� c�1� a). The resolution of
this cycle is trivial, since once student 3 applies to school c again with his outstanding
fraction 1

4 , all of this is rejected by c since both student 1 and student 3 have equal pri-
ority at c and they already have a fraction of 1

2 each at c. Thus, it is no longer true that
3 ↪→c 1, and the cycle is resolved.

Step 7. Student 3 has an outstanding fraction of 1
4 and applies to his next best

school, d. This is tentatively accepted by d.
Step 8. Student 4 has an outstanding fraction of 3

4 and applies to his next best
school, a. School a has two applicants, a whole fraction of student 2 and 3

4 of student 4.
Since the quota of a is only 1, and student 4 has higher priority than student 2 at a, then
3
4 of student 4 and 1

4 of student 2 is tentatively admitted to a, while 3
4 of student 2 is

rejected. We have 4 ↪→a 2.
Step 9. Student 2 has an outstanding fraction of 3

4 and applies to his next best
school, c. School c has three applicants: student 1 with fraction 1

2 , student 3 with frac-
tion 1

2 , and student 2 with fraction 3
4 . Since the quota of c, which is 1, has been exceeded,

and since student 2 has higher priority than each of students 1 and 3, who have equal
priority, 3

4 of student 2 and 1
8 of each of students 1 and 3 are tentatively admitted to c,

while 3
8 of each of students 1 and 3 is rejected. We have 2 ↪→c 1 and 2 ↪→c 3. The former

relation induces a new cycle (1� b�4� a�2� c). This cycle is not trivial. We use a simple sys-
tem of equations to resolve this cycle with unknowns y1, y4, and y2 as the eventual limit
rejected fractions from c, b, a and tentatively admitted fractions to b, a, c of students 1,
4, and 2, respectively:

y1 +ω1 = max{y4�0} + max{φ3�b − (φ4�b − y4)�0}�
y4 = max{y2�0}�
y2 = max{y1�0} + max{φ3�c − (φ1�c − y1)�0}�

where ω1 = 3
8 is the fraction of student 1 that will be tentatively admitted to b when the

cycle is initiated, φ4�b = φ3�b = 1
4 are the fractions of students 4 and 3 currently tenta-

tively admitted to b when the cycle is initiated, and φ3�c = φ1�c = 1
8 are the fractions of

students 3 and 1 currently tentatively admitted to c. Observe that these unknowns can
be solved through the linear system

y1 + 3
8 = 2y4� y4 = y2� y2 = 2y1�

By solving them, we obtain

y4 = 1
4 � y2 = 1

4 � y1 = 1
8 �

As these rejected fractions are all less than or equal to the initially admitted fractions of
students 4, 2, and 1 to b, a, and c, respectively, indeed it is possible to resolve this cycle
with these fractions.25 At this point, the tentative random matchings of students are a

25If we had a situation such that yi� > φi��c�−1 for some i� in the cycle where φi��c�−1 is the initially tenta-
tively admitted fraction of i� at c�−1, from which he is being rejected by repeated applications of i�−1, then
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whole fraction of student 1 at b, a whole fraction of student 4 at a, and a whole fraction of
student 2 at c. From the previous step, we also have 1

4 of student 3 tentatively admitted
at d.

Step 10. Student 3 has an outstanding fraction of 3
4 , with which he applies to his best

school that has not rejected him yet, d. Now, the whole fraction of student 3 is applying
to d, which tentatively admits him.

There are no outstanding student fractions left. The algorithm terminates with the
outcome

a b c d

1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0 ♦

Appendix B: Proofs of the results regarding the FDA mechanism

Proof of Proposition 3. First, we prove that a rejection cycle can be resolved in finite
time. Suppose a rejection cycle occurs at a step when i1 applies to c1 with fraction ω1

after this fraction is rejected from cm:

i1 ↪→c1 i2 ↪→c2 · · · ↪→cm−1 im ↪→cm i1�

At this point, for each s, letφi�cs be the fraction of student i tentatively assigned to school
cs . Note that among the students i1� � � � � im, only i1 has a positive fraction, ω1, that is
tentatively unassigned at this time. Let φi�cs be the fraction of student i ∈ I tentatively
held at each cs at this point. We will place ω1 in c1 if we can. If not, i1 will be rejected by
c1 and the cycle will be resolved. Suppose ω1 can be tentatively placed in c1.

Let ys+1 be the rejected fraction of is+1 from cs when the cycle is resolved. This frac-
tion will be tentatively held by school cs+1 at this stage. Observe that all rejected fractions
from cs belong to the students who are at the same priority level with is+1. We need to
make sure that each student i at the same priority level as is+1 is held at the same frac-
tion φis+1�cs − ys+1 at cs , unless i did not have that much of a fraction to start with. The
sum of all tentatively accepted fractions at the resolution of the cycle will be qcs .

A simple way to solve these equations is as follows: LetMs = {i∼cs is+1 |φi�cs > 0} for
all s. Observe that if we did have sufficient fractions already held at the school cs of is+1,
then we can iteratively solve for ys as

ys =
∑
i∈Ms

max{φi�cs − (φis+1�cs − ys+1)�0} ∀s ∈ {2� � � � �m}� (1)

as when ys of is is admitted at cs , it causes the fraction [φi�cs − (φis+1�cs − ys+1)] to be
rejected for each student i ∈ Ms whenever this fraction is greater than 0 to start with

we would set yi� =φi��c�−1 and solve the other equations. See the proof of Proposition 3 in Appendix B for a
generalization of this method.
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(wherem+ 1 = 1 in modulom). For c1, we have

y1 +ω1 =
∑
i∈M1

max{φi�c1 − (φi2�c1 − y2)�0}� (2)

as y1 + ω1 is the total admitted fraction of i1 at school c1. Then we can solve these m
equations inm unknowns using a number of linear equation systems.

At the determined {yt} vector satisfying (1) and (2), a student is+1 may have ys+1 >

φis+1�cs , i.e., we cannot reject ys+1 fraction of is+1 from cs. Then we try setting ys+1 =
φis+1 ; otherwise the equations for the other yt �= ys+1 are given as in (1) and (2). We
can similarly solve this system. Each yt decreases, as ys+1 decreased and ys and ys+2 are
positively correlated with ys+1 and so on and so forth for all the other yt ’s. If we still
have at the new vector {yt} a student iu+1 such that yu+1 >φiu+1�cu , we set yu+1 =φu+1�cu
and all other yt �= yu+1 are given as in (1) and (2). We solve the new system. As {yt}
decreases again, we have ys+1 <φis+1�cs and, hence, the problem for the first student is+1
is resolved. We continue iteratively as above for all students it+1, yt+1 ≤ φit+1�ct . We are
done.

If a cycle does not occur, similarly the step of the algorithm can be resolved easily.
Observe that in each step of the FDA algorithm, students get weakly worse off, since

they only make proposals to a school that has not rejected a fraction of themselves. After
all |I| students make offers, at least one student is rejected by one school and has an
outstanding fraction, or the algorithm converges, whether or not a cycle occurs. Since
there are |C| schools, the algorithm converges in at most |I||C| steps. �

Proof of Theorem 3. We argue by contradiction. Suppose this is not true for some
school-choice problem. Fix a problem [P��]. Let π ∈ X be the FDA algorithm’s outcome
random matching for some order of students making offers and let ρ ∈ X be a strongly
ex ante stable random assignment that is not stochastically dominated byπ. This means
that

there exist i0 ∈ I and a0 ∈ C such that 0 �= ρi0�a0 >πi0�a0
(3)

where a0 Pi0 e0 for some e0 ∈ C with 0 �= πi0�e0 > ρi0�e0 �

We will construct a finite sequence of student–school pairs as follows.
Construction of a trading cycle from π to ρ: Statement (3) implies that there exists

i1 ∈ I \{i0} such that ρi1�a0 <πi1�a0 �= 0. Then strong ex ante stability of the FDA outcomes
implies that i1 �a0 i0, for otherwise π would have induced ex ante justifiable envy of i1
toward i0 for a0 (in case i1 �a0 i0) or π would have ex ante discriminated between i0 and
i1 at a0 (in case i1 ∼a0 i0). Then, since ρi1�a0 < πi1�a0 , ρi0�a0 > πi0�a0 , and ρ is strongly ex
ante stable, for ρ not to have ex ante justified envy of i1 toward i0 for a0 (in case i1 �a0 i0)
and ρ not to have ex ante discrimination between i0 and i1 for a0 (in case i1 ∼a0 i0), there
must exist some a1 ∈ C \ {a0} such that 0 �= ρi1�a1 >πi1�a1 , where a1 Pi1 a0. More precisely,
there are two cases.

Case 1: i1 �a0 i0. Suppose by contradiction that for all b ∈ C with b Pi1 a0, we have
ρi1�b ≤ πi1�b. Then by feasibility there is c ∈ C with a0 Pi1 c and ρi1�c > πi1�c . But then i1
would ex ante justifiably envy i0 for a1 at ρ, contradicting ρ is strongly ex ante stable.
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Case 2: i1 ∼a0 i0. Since πi0�e0 �= 0 and a0 Pi0 e0 (by statement (3) above), we have
0 �= πi1�a0 ≤ πi0�a0 �= 0. Thus, ρi1�a0 < πi1�a0 and ρi0�a0 > πi0�a0 imply that ρi1�a0 < ρi0�a0 .
Then no ex ante discrimination at ρ between i0 and i1 for a0 implies that there is no
d ∈ C where a0 Pi1 d with ρi1�d �= 0. Then such an a1 should exist for i1.

Observe that i1 satisfies the same statement (3) above as i0 does using a1 instead of
a0, using a0 instead of e0, and using i1 �a0 i0, i.e.,

ρi1�a1 >πi1�a1� a1 Pi1 a0 with ρi1�a0 <πi1�a0 �= 0 and i1 �a0 i0�

Thus, as we continue iteratively, we obtain a finite sequence of students and schools
such that each pair (as−1� is) (subscripts are modulo n + 1, so that n + 1 ≡ 0) appears
only once in the sequence,

e0� i0� a0� i1� a1� � � � � in� an

and each is satisfies condition (3), replacing is with i0, as with a1, and as−1 with e0, and
additionally satisfying is �as−1 is−1, i.e.,

ρis�as > πis�as � as Pis as−1 with ρis�as−1 <πis�as−1 �= 0 and is �as−1 is−1� (4)

and, finally, by finiteness of schools and students, we have

an ≡ e0 and yet in �= i0�

where e0 can be chosen as defined in condition (3). This sequence describes a special
probability trading cycle from π to ρ for some better schools, so that ρ cannot be ordi-
nally dominated by π.

Observe that there can be many such cycles, some of them overlapping. And each
such cycle has at least two agents and two schools. Suppose there are m∗ such cy-
cles Cyc1� � � � �Cycm� � � � �Cycm

∗
, and let I1� I2� � � � � Im� � � � � Im

∗
be the sets of students and

C1�C2� � � � �Cm� � � � �Cm
∗

be the corresponding sets of schools in these cycles, respec-
tively. Let I∗ be the union of all above student sets and let C∗ be the union of all above
school sets. We will prove some claims that will facilitate the proof of the theorem.

Claim 1. Take a cycle Cycm = (i0� a0� � � � � in� an). There is no as ∈ Cm and no b ∈ C such
that for student is+1, we have as Pis+1 b and ρis+1�b �= 0.

Proof. Suppose, to the contrary, there are as ∈ Cm and b ∈ C such that as Pis+1 b and
ρis+1�b �= 0. We also have ρis+1�as < πis+1�as �= 0 by construction of cycle Cycm (see state-
ment (4) above). We also have by construction 0 �= ρis�as > πis�as , as Pis as−1, ρis�as−1 <

πis�as−1 �= 0, and, finally, is+1 �as is (see statement (4) above). Consider two cases:
Case 1: is+1 �as is . Since ρis�as �= 0, ρis+1�b �= 0, and as Pis+1 b, student is+1 ex ante

justifiably envies is for as at ρ, contradicting that ρ is strongly ex ante stable.
Case 2: is+1 ∼as is . By the strong ex ante stability of π, there is no ex ante discrim-

ination between is+1 and is for as at π. Since as Pis as−1 and πis�as−1 �= 0, we must have
πis�as ≥ πis+1�as . Then we have ρis�as > πis�as ≥ πis+1�as > ρis+1�as . Recall that ρis+1�b �= 0 for



580 Kesten and Ünver Theoretical Economics 10 (2015)

as Pis+1 b. The last two statements imply that ρ ex ante discriminates between is and is+1

at as , contradicting that ρ is strongly ex ante stable. �

Consider the sequence of offers and rejections in the FDA algorithm that leads to π.
Let is ∈ Im for a cycle Cycm (without loss of generality, let (i0� a0� i1� a1� � � � � in� an) be this
cycle) be the last student in I∗ to apply and get a positive fraction under π from the next
school in his cycle (i.e., for is , this school is as ∈ Cm). Let t be this step of the algorithm.
We prove the following claim.

Claim 2. The total sum of student fractions that school as−1 has tentatively accepted un-
til the beginning of step t of the FDA algorithm is equal to its quota, i.e., school as−1 is
filled at the beginning of step t.

Proof. Consider agent is−1. We have πis−1�as−2 > 0 by construction of Cycm. By the
choice of student is , student is−1 should have applied to school as−2 at some step p< t.
We also have as−1 Pis−1 as−2 by construction of Cycm. Then, in the FDA algorithm, is−1

should have applied to as−1 first at some step r < p. This is true as he can apply to as−2

in the algorithm only after having been rejected by school as−1. A school can reject a
student only if it has tentatively accepted student fractions adding up to its quota. Since
as−1 remains to be filled after it becomes filled in the algorithm, the claim follows. �

Thus, by Claim 2, as−1 is full at the beginning of step t just before student is applies.
Then there exists some student j ∈ I with is �as j, such that some fraction of j was ten-
tatively accepted by school as before step t and some fraction of j is kicked out of school
as at the end of step t (so that by the choice of is , some fraction of his gets in as−1). Since
the FDA algorithm converges to a well defined random matching, there is some b ∈ C
such that as−1 Pj b and πj�b �= 0. We prove the following claim.

Claim 3. We have j /∈ I∗.

Proof. Suppose not, i.e., j is in some cycle. By the choice of student is , the ordered four-
tuple b (= as−2), j (= is−1), as−1, is cannot be part of Cycm, i.e., j cannot be accepted by b
after being rejected by as−1 in the FDA algorithm and yet ρj�b < πj�b (i.e., see statement
(4) for the construction of a cycle). But then by the choice of school b, ρj�b ≥ πj�b �= 0.
However, Claim 1 applied for school as−1 and student j (= is−1), and the fact that as−1Pj b

together imply that ρj�b = 0, contradicting the previous statement. Thus, j /∈ I∗. �

We are ready to finish the proof of the theorem. Since school as−1 is full at the begin-
ning of step t (by Claim 2), there is student is−1 ∈ Im \ {is}, i.e., preceding as−1 in Cycm,
with 0 �= ρis−1�as−1 >πis−1�as−1 who applied to school as−2 ≺is−1 as−1 after being rejected by
school as−1. Moreover, by the choice of is , student is−1 applies to as−2 before step t (for
the last time) and, hence, he was rejected by as−1 before step t. Moreover, is−1 �= j (by
Claim 3). Thus, j �as−1 is−1. We will establish a contradiction and complete the proof of
the theorem. Two cases are possible.
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Case 1: j �as−1 is−1. Since ρj�b �= 0, strong ex ante stability of ρ implies that ρis−1�as−1 =
0, leading to a contradiction to the fact that 0 �= ρis−1�as−1 .

Case 2: j ∼as−1 is−1. Recall again that πis−1�as−2 > 0 and as−1 Pis−1 as−2, πj�b > 0, and
as−1 Pj b. But then is−1 is rejected by as−1 at the FDA algorithm at the same step as j
is rejected with some fraction, which is step t (since ρ does not ex ante discriminate
between j and is−1 at as−1, they should have equal fractions at as−1 prior to step t), and
thus is−1 applies to school as−2 after step t, contradicting the choice of student is . �

Proof of Remark 2. Let ϕ be a strongly ex ante stable mechanism. Consider the fol-
lowing problem with three students 1, 2, 3, and three schools a, b, c, each with quota 1:

P1 P2 P3

a a b

b c a

c b c

�a �b �c
3 1

���

1�2
���

There is a unique strongly ex ante stable random matching that is given as

ρ=
a b c

1 0 1 0
2 0 0 1
3 1 0 0

Thus, ϕ[P��] = ρ.
However, if student 1 submits the preferences P ′

1 = (acb) instead of Pi, then the
unique strongly ex ante stable random matching will be

ρ′ =
a b c

1 1
2 0 1

2

2 1
2 0 1

2
3 0 1 0

Hence, ϕ[(P ′
1�P−1)��] = ρ′. Observe that there can be von Neumann–Morgenstern util-

ity functions of student 1 that may make ρ′
1 more desirable than ρ1.

If |I| > 3, we can make the example hold by embedding it in a problem with I =
{1�2� � � � � |I|} and C = {a�b� c�d4� � � � � d|I|}, where each student i ∈ {4� � � � � |I|} is ranking
school di as his first choice and each student i ∈ {1�2�3} is ranking each school di lower
than schools a, b, c. Under any ex ante strongly stable matching, each i ∈ {4�5� � � � � |I|}
will be matched with di and {1�2�3} will be mapped with {a�b� c}. �

Appendix C: Proof of Proposition 5

Proof of Proposition 5. “Only if.” Let ρ be an ex ante stable random matching with
an ex ante stable improvement cycle Cyc = (i1� a1� � � � � im�am). Let im+1 ≡ i1 and am+1 ≡
a1. Let π be the random matching obtained by satisfying this cycle with some feasible
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fraction. Then π ordinally dominates ρ. Each student is envies student is+1 for as+1 due
to as at ρ, and is is a highest al-priority student ex ante envying a student with a positive
probability at school as+1. Thus, either (i) is is at the same priority level with is+1 for as+1
or (ii) is is at a lower-priority level than is+1 for as+1 but any i∼as+1 is+1 does not ex ante
envy himself or is+1 for as+1 at ρ; that is, i is not assigned with a positive probability to a
worse school than as+1 at ρ. Thus, when we satisfy the cycle Cyc, there will be no ex ante
justified envy toward a lower-priority student, and π is ex ante stable.

“If.” Let ρ be an ex ante stable random matching. Let π �= ρ be an ex ante stable
random matching that ordinally dominates ρ. We will construct a particular ex ante
stable improvement cycle at ρ.

Let I ′ = {i ∈ I :ρi �= πi}. Clearly, I ′ �= ∅. Note that for all i′ ∈ I ′, πi′ stochastically
dominates ρi′ . Thus, whenever πi′�a > ρi′�a for some i′ ∈ I ′ and a ∈ C, then there is j′ ∈ I ′
with πj′�a < ρj′�a; moreover, since πj′ stochastically dominates ρj′ , there is b ∈ C with
b Pj′ a and πj′�b > ρj′�b. Let C ′ = {c ∈ C :πi�c > ρi�c for some i ∈ I ′}. Clearly, C ′ �= ∅.

Consider the following directed graph: Each student–school pair (i� c) ∈ I ′ ×C ′ with
ρi�c �= 0 is represented by a node. Fix a school c ∈ C ′. Let each student–school pair (i� c) in
this graph containing school c be pointed to by every student–school pair containing a
student who schoolwise-envies student i for school c and has the highest priority among
such schoolwise-envying students in I ′. We repeat this for each c ∈ C ′.

Note that no student–school pair in the resulting graph points to itself, and each
student–school pair in this graph is pointed to by at least one other student–school
pair. Moreover, each student–school pair (i� c) in this graph can only be pointed to by
a student–school pair that contains a different school than c. Then there is at least one
cycle of student–school pairs Cyc = (i1� a1� i2� a2� � � � � im�am) with (im�am)≡ (i0� a0) and
m ≥ 2. By construction, we have (is� as) �ρ (is+1� as+1) for s = 0� � � � �m − 1. Note also
that cycle Cyc contains at least two distinct students. Then cycle Cyc is a stochastic
improvement cycle.

Now consider school as+1 of the pair (is+1� as+1) in cycle Cyc. Suppose, for a contra-
diction, that student is does not ex ante top-priority schoolwise-envy is+1 for as+1 due
to as . Then there is a student–school pair (j�d) with j /∈ I ′, which is not represented in
our graph, such that (j�d) �ρ (is+1� as+1). In particular, j �as+1 i for any i ∈ I ′ such that
(i� d)�ρ (is+1� as+1) for any d ∈ C ′. Let k ∈ I ′ such that πk�as+1 > ρk�as+1 . Since j �as+1 k

and ρj�d = πj�d , student j justifiably ex ante envies k at π. This contradicts the ex ante
stability of π. �

Appendix D: The EASC algorithm

The description of the algorithm mostly follows the constrained consumption algorithm
of Athanassoglou and Sethuraman (2011) with a few modifications.

Given an ex ante stable matching ρ, we first define the set

A(ρ)= {(i� c) ∈ I ×C :ρi�c > 0 or (i� a)�ρ (j� c) for some j ∈ I and a ∈ C}�
Given an initial ex ante stable random matching ρ, our adaptation of the constrained
consumption algorithm finds a random matching π such that (i) π ordinally dominates
or is equal to ρ and (ii) (i� c) /∈ A(ρ)⇒ πi�c = 0.
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It is executed through a series of flow networks, each of which is a directed graph
from an artificial source node to an artificial sink node, denoted as σ and τ, respectively.
We will carry the assignment probabilities from source to sink over this flow network,
so that the eventual flow will always determine a feasible random matching. The initial
network is constructed as follows.

The nodes of the network are (i) source σ and sink τ, (ii) each school c ∈ C, and
(iii) for each i ∈ I and � ∈ {1� � � � � |C|}, i(�) ∈ I × {1� � � � � |C|}; i.e., the �th node of student i
is a node, where this node corresponds to the �th choice of student i among the schools.

LetN = I × {1� � � � � |C|} ∪C ∪ {σ�τ} be the set of nodes of the network.
An arc from node x to node y is represented as x→ y. Let ωx→y be the capacity of

arc x→ y.26 The arcs have the following load capacities:

1. Each arc σ → i(�) has the capacity ρi�c , where school c is the �th choice of student i.

2. Each arc i(�) → c has the capacity ∞ if (i� c) ∈ A(ρ) and c is ranked �th or better at
the student i’s preferences, and is 0 otherwise.

3. Each arc c→ τ has the capacity qc , the quota of school c.

4. Any arc between any other two nodes has capacity zero.

Thus, the arcs with positive load capacities are directed from the source σ to the
student nodes, from the student nodes to feasible school nodes with respect to A(ρ),
and from school nodes to the sink τ.

Let � = 〈N�ω〉 denote this network. We define additional concepts for such a
network.

A cut of the network is a subset of nodes K ⊆N such that σ ∈K and τ ∈N \K. The
capacity of a cutK is the sum of the capacities of the arcs that are directed from nodes in
K to nodes inN \K, and it is denoted as�(K), that is,�(K)= ∑

x∈K�y∈N\K ωx→y . A min-
imum cut K∗ is a minimum capacity cut, i.e.,K∗ ∈ arg min{σ}⊆K⊆N\{τ}�(K). A flow of the
network is a list φ = (φx→y)x�y∈N such that (i) for each x� y ∈N , φx→y ≤ ωx→y , i.e., the
flow cannot exceed the capacity, and (ii) for all x ∈N \ {σ�τ},

∑
y∈N φy→x = ∑

y∈N φx→y ,
i.e., total incoming flow to a node should be equal to the total outgoing flow. Let �
be the set of flows. The value of a flow φ is the total outgoing flow from the source,
i.e., �(φ) = ∑

y∈N φσ→y . A maximum flow φ∗ is a flow with the highest value, i.e.,
φ∗ ∈ arg maxφ∈��(φ). Observe that in our network �, the maximum flow value is equal
to |I|.

The algorithm solves iterative maximum flow–minimum cut problems, a powerful
tool in graph theory and linear programming. The corresponding duality theorem is
stated as follows.

Theorem 8 (Ford and Fulkerson 1956; maximum flow–minimum cut theorem). The
value of the maximum flow is equal to the capacity of a minimum cut.

26Without loss of generality, we focus on rational numbers as load capacities, since only rational num-
bers appear as input to both FDA and FDAT.
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There are various polynomial-time algorithms, such as the Edmonds and Karp
(1972) algorithm, that can determine a minimum cut and maximum flow.

The ex ante stable consumption algorithm updates the network starting from � by
updating the capacity of some of the source arcsωσ→i(�) over time, which is a continuous
parameter t ∈ [0�1]. It starts from t = 0 and increases up to t = 1. Thus, let us relabel the
source arc weights as a function of time t asωtσ→i(�)

by settingω0
σ→i(�)

≡ωσ→i(�) for each

arc σ → i(�). No other arc capacity is updated. Let �t be the corresponding flow network
at time t.

There will also be iterative steps in the algorithm with start times t1 = 0 ≤ t2 ≤ · · · ≤
tn ≤ 1 = tn+1, for steps 1� � � � � n, respectively. All assignment activity in step m occurs in
the time interval (tm� tm+1].

This algorithm is in the class of eating algorithms introduced by Bogomolnaia and
Moulin (2001), and t also represents the assigned fraction of each student, since each
student is assumed to be assigned at a uniform speed of 1. This activity is referred to as
eating a school. Each school is assumed to be a perfectly divisible object with qc copies.

We update the feasible assignment set A(ρ) in each step. Let Am(ρ) be the feasible
student–school pairs at stepm= 1� � � � � n. We have A1(ρ)= A(ρ)⊇ A2(ρ)⊇ · · · ⊇ An(ρ).

At each step m, let bi ∈ C be the best feasible school for student i, that is, (i� bi) ∈
Am(ρ) and bi Ri c for all c with (i� c) ∈ Am(ρ). Also, let ei ∈ C be the endowment school of
student i, that is, if Ri(c) is the rank of school c for i, then ωt

m

σ→i(Ri(ei))
> 0 and bi Pi ei Ri c

for all c with ωt
m

σ→i(Ri(c))
> 0. Observe that ei may not exist for a student i, which case is

denoted as ei = ∅. In the algorithm we describe here, each student consumes the best
school feasible for him at t while his endowment of a worse school decreases.

We are ready to state the algorithm, a slightly modified version of the Athanassoglou
and Sethuraman (2011) algorithm.

The EASC Algorithm. Suppose that until Step m ≥ 1, we determined tm,
{ωtmσ→i(�)

}i∈I��∈{1�����|C|}, and Am(ρ).
Step m: We determine tm+1, {ωtσ→i(�)

}i∈I��∈{1�����|C|} for all t ∈ (tm� tm+1], and Am+1(ρ)

as follows: Initially time satisfies t = tm. Let {bi� ei}i∈I be determined given Am(ρ) and
{ωtmσ→i(�)

}.

Then t continuously increases. At t, the arc capacities ω(t)σ→i(�)
are updated for each

i ∈ I and c ∈ C as

ωtσ→i(Ri(c))
:=

⎧⎪⎪⎨
⎪⎪⎩

max{t − ∑Ri(bi)−1
�=1 ωt

m

σ→i(�)
�ωt

m

σ→i(Ri(bi))
} if c = bi and ei �= ∅

min{∑Ri(bi)
�=1 ωt

m

σ→i(�)
+ωtmσ→i(Ri(ei))

− t�ωtmσ→i(Ri(ei))
} if c = ei

ωt
m

σ→i(Ri(c))
otherwise�

That is, each student i consumes his best feasible school bi with uniform speed by trad-
ing away fractions from his endowment school ei if it exists and the consumption frac-
tion of the best school exceeds his initial consumption of ωt

m

σ→i(Ri(bi))
.

Time t increases until one of the following two events occurs:
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• We have t < 1, and yet
– the endowment school fraction endowed to some student reaches zero, i.e.,
ωtσ→ei

= 0 for some i ∈ I: We update

tm+1 := t

Am+1(ρ) := Am(ρ);
or

– any further increase in t will cause the maximum flow capacity in the network to
fall, i.e., for tε > t and arbitrarily close to t, the network �(t

ε) has a maximum flow
capacity less than that of �(t) (maximum flow of any �(s) can be determined by
an algorithm such as Edmonds–Karp): This means that if some student were to
consume his best feasible school more, the resulting outcome will not be first-
order stochastically improving for all students. Let K be a minimum cut of �t

ε
.

Any student i, who satisfies i(Ri(bi)) ∈K and i(Ri(ei)) /∈K, has an endowment that
is not in high demand. Alternatively, he wants to consume more of a school that
is in high demand. Thus, if he consumes more of his best school, then even-
tually this will cause some student’s final assignment not to first-order stochas-
tically dominate his endowment, contradicting the goal of achieving stochastic
Pareto improvement. We refer to the set of such students as the set of bottleneck
students. Thus, we update

tm+1 := t

Am+1(ρ) := Am(ρ) \ {(i� bi) :ei �= ∅� i(Ri(bi)) ∈K� and i(Ri(ei)) /∈K}�
We continue with Stepm+ 1.

• t = 1: The algorithm terminates. The outcome of the algorithm π ∈ X is found as
follows: Letφ be a maximum flow of the network �1 (i.e., the final network at time
t = 1). Then, we set for all i ∈ I and c ∈ C,

πi�c :=
|C|∑
�=1

φi(�)→c�

i.e., the total flow from student i to school c.

Athanassoglou and Sethuraman (2011) proved that this algorithm with A(ρ)= I×C
(i.e., the case in which all schools are feasible to be assigned to each student) converges
to a unique ordinally efficient random matching such that it treats equals equally when-
ever ρ treats equals equally; and it Pareto dominates or is equal to ρ. Their statements
can be generalized to the case in which A(ρ)⊆ I×C such that the outcome of the above
algorithm π is constrained ordinally efficient in the class of random matchings χ ∈ X
satisfying χi�c > 0 ⇒ (i� c) ∈ A(ρ). Moreover, π is also ex ante stable whenever ρ is ex
ante stable by the construction of A(ρ); it ordinally dominates or is equal to ρ; and it
treats equals equally whenever ρ treats equals equally. We skip these proofs for brevity.
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Appendix E: How is the EASC algorithm embedded in the FDAT algorithm?

Example 9. We illustrate the functioning of the FDAT algorithm with the EASC algo-
rithm using the same problem in Example 3 (and Example 5).

Step 0. We found the FDA outcome in Example 3 as

ρ[1] =

a b c d

1 11
12

1
12 0 0

2 2
3 0 1

3 0

3 5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6 0 1

6

Step 1. We form the feasible student–school pairs for matching as

A1(ρ[1])= {(1� a)� (1� b)� (2� a)� (2� c)� (3� a)� (3� b)� (3� c)� (3� d)�
(4� c)� (5� c)� (5� d)� (6� a)� (6� b)� (6� c)� (6� d)}�

We execute the EASC algorithm as follows.
Step 1.1. Time is set as t1 = 0. Given that i(�) represents the �th choice school of

student i, we form the flow network with the positive weights obtained from the en-
dowment random matching ρ[1] as for all i ∈ I and for all schools f ∈ C, we set the arc
capacities

ω0
σ→i(Ri(f ))

= ρ[1]
i�f �

where Ri(f ) is the ranking of school f in i’s preferences. Next, for all i ∈ I and f ∈ C, if
(i� f ) ∈A1(ρ[1]), we set the arc capacities of the flow network as

ω0
i(�)→f = ∞

for all ranks �≤Ri(f ). Finally, for all f ∈ C, we set the arc capacities

ω0
f→τ = qf �

Figure 1 shows this network for t ∈ [0� 1
12 ].

Moreover, given these constraints, the best available schools and endowment
schools are

Students (i) Best school (bi) Endowment school (ei)
1 b a

2 c a

3 d c

4 c ∅

5 c d

6 d b
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Figure 1. The consumption network for Example 9 at Step 1.1 for times t = 1
12 + ε for ε ≥ 0

sufficiently small. A minimum cut at time t is denoted by circular nodes in the graph as
K = {σ�1(1)�2(1)�3(1)�3(2)�3(3)4(2)�5(1)�5(2)�6(1)�6(2)�6(3)� b� c�d}. This results with the bottle-
neck set of students J = {1�2}. The dotted edges show the arcs going out of the minimum cut
with the total capacity 6 − ε, which is equal to the maximum flow. Moreover, for all t ∈ [0� 1

12 ]
maximum flow is 6. Hence t2 = 1

12 .

We start increasing time t starting from t1 = 0; thus, each student starts consuming
his best available school by trading away from his endowment school (whenever ei �=∅).
That is, the capacity of each arc σ → i(Ri(bi)) is updated as

ωtσ→i(Ri(bi))
= max

{
t −

Ri(bi)−1∑
�=1

ω0
σ→i(�)

�ω0
σ→i(Ri(bi))

}

and the capacity of each arc σ → i(Ri(ei)) is updated as

ωtσ→i(Ri(ei))
= min

{
Ri(bi)∑
�=1

ω0
σ→i(�)

+ω0
σ→i(Ri(ei))

− t�ω0
σ→i(Ri(ei))

}

as long as a feasible random assignment can be obtained in the network, i.e., the value
of the maximum flow of the network is |I| = 6 or the capacity of the endowment school
arc does not go to zero. The first condition is satisfied at t = 1

12 : If t increases above 1
12 ,

the value of the maximum flow falls below 6 because of the bottleneck set of agents

J = {1�2}
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for the minimum cut

K = {σ�1(1)�2(1)�3(1)�3(2)�3(3)�4(2)�5(1)�5(2)�6(1)�6(2)�6(3)� b� c�d}�

At this t, there is an excess demand for student 1’s and student 2’s best schools, but other
agents do not demand student 1’s and student 2’s endowment school. Thus, students 1
and 2 can no longer trade their endowment school in exchange for a fraction of their
best schools. To see that {1�2} is a bottleneck set, we find a minimum cut K as seen in
Figure 1 for the network at t = 1

12 . Each student’s representative nodes for his best school
and his endowment school are in K, except for students 1 and 2. Their nodes for best
schools are in K, but not their nodes for endowment schools. Also their endowment
school a is not in K. Thus, Step 1.1 ends, and students 1 and 2 can no longer consume
their best schools b and c, respectively. (Observe that the network at t = 1

12 is identical
to the network at t = 0.) We set

t2 = 1
12

A2(ρ[1]) = A1(ρ[1]) \ {(1� b)� (2� c)}�

Step 1.2. Time is set as t2 = 1
12 . The best and endowment schools are updated as

Students (i) Best school (bi) Endowment school (ei)
1 a ∅

2 a ∅

3 d c

4 c ∅

5 c d

6 d b

Time increases until t = 1
6 , when there is a new bottleneck set of students with minimum

cut

K = {σ�2(1)�3(1)�3(2)�4(2)�5(1)�5(2)�6(1)� c�d}�
Since 6(R6(b6)) = 6(R6(d)) = 6(1) ∈K and 6(R6(e6)) = 6(R6(b)) = 6(3) /∈K, and there is no other
student such that his node for his best (available) school is in K while his node for his
endowment school is not, we determine the new bottleneck set as

J = {6}�

Thus, we update

t3 = 1
6

A3(ρ[1]) = A2(ρ[1]) \ {(6� d)}�

At this point the capacities of the source–agent nodes are set still as their initial values at
ω0 (seen in Figure 1).
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Step 1.3. Time is set as t3 = 1
6 . The best and endowment schools are updated as

Students (i) Best school (bi) Endowment school (ei)
1 a ∅

2 a ∅

3 d c

4 c ∅

5 c d

6 b ∅

At this step, we observe actual trading of fractions of schools c and d between students
3 and 5, since all other students have no endowment schools to trade: time t increases
until 1

2 at which point only the following arc capacities are changing, while the others
are still at the ω0 level:

ω
1/2
σ→3(R3(b3))

= ω
1/2
σ→3(R3(d))

= ω
1/2
(σ→3(1))

= max

{
t −

R3(b3)−1∑
�=1

ω
1/6
σ→3(�)

�ω
1/6
σ→3(R3(b3))

}

= max
{

1
2 − 0� 1

6

}
= 1

2 ;

ω
1/2
σ→3(R3(e3))

= ω
1/2
σ→3(R3(c))

= ω
1/2
σ→3(2)

= min

{
R3(b3)∑
�=1

ω
1/6
σ→3(�)

+ω1/6
σ→3(R3(e3))

− t�ω1/6
σ→3(R3(e3))

}

= min
{

1
6 + 1

3 − 1
2 �

1
3

}
= 0;

ω
1/2
σ→5(R5(b5))

= ω
1/2
σ→5(R5(c))

= ω
1/2
σ→5(1)

= max

{
t −

R5(b5)−1∑
�=1

ω
1/6
σ→5(�)

�ω
1/6
σ→5(R3(b3))

}

= max
{

1
2 − 0� 1

3

}
= 1

2 ;

ω
1/2
σ→5(R5(e5))

= ω
1/2
σ→5(R5(d))

= ω
1/2
σ→5(2)
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= min

{R5(b5)∑
�=1

ω
1/6
σ→5(�)

+ω1/6
σ→5(R5(e5))

− t�ω1/6
σ→5(R5(e5))

}

= min
{

1
3 + 2

3 − 1
2 �

2
3

}
= 1

2 �

Since the endowment school’s matching probability reaches zero for student 3, the step
ends and we update:

t4 = 1
2

A4(ρ[1]) = A3(ρ[1])�

Step 1.4. Time is set to t4 = 1
2 and only student 3’s endowment school changed as

e3 = b. But at this time, there is a minimum cut

K = {σ�2(1)�3(1)�4(2)�5(1)�5(2)�6(1)� c�d}�

Since 3(R3(b3)) = 3(R3(d)) = 3(1) ∈K and 3(R3(e3)) = 3(R3(b)) = 3(3) /∈K, and there is no other
student with this property, the bottleneck set is

J = {3}�

Thus, we set

t5 = 1
2

A5(ρ[1]) = A4(ρ[1]) \ {(3� d)}�

Step 1.5. Time is set to t5 = 1
2 and only student 3’s best school changed as e3 = c. But

at this time, there is a minimum cut

K = {σ�2(1)�3(1)�4(2)�5(1)�5(2)�6(1)� c�d}�

Since 3(R3(b3)) = 3(R3(c)) = 3(1) ∈K and 3(R3(e3)) = 3(R3(b)) = 3(3) /∈K, and there is no other
student with this property, the bottleneck set is

J = {3}�

Thus, we set

t5 = 1
2

A5(ρ[1]) = A4(ρ[1]) \ {(3� c)}�

Step 1.6. Time is set to t6 = 1
2 , student 3’s best school changed as b3 = b, and his

endowment school changed as e3 = a. Time t increases until 7
12 , when further increasing

t would create a bottleneck set of students with minimum cut

K = {σ�1(1)�2(1)�3(1)�3(3)�4(2)�5(1)�5(2)�6(1)�6(3)� b� c�d}�
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Since 3(R3(b3)) = 3(R3(b)) = 3(3) ∈K and 3(R3(e3)) = 3(R3(a)) = 3(4) �∈K, and there is no other
student with this property, we have the bottleneck set at

J = {3}�

Observe that in the interval t ∈ ( 1
2 �

7
12 ], student 3 does not consume his best school more

than his capacity. This interval serves as the continuation of the trading between stu-
dents 3 and 5 regarding schools c and d that started at Step 1.3. Although student 3 has
already traded all his endowment of ( 1

3)c away in return to get ( 1
12)d, student 5 has not

fully gotten ( 1
3)d and traded away ( 1

3)c. Thus, the market has not yet cleared. Increase
in t helps the market to clear, since now we have

ω
7/12
σ→5(R5(b5))

= ω
7/12
σ→5(R5(c))

= ω
7/12
σ→5(1)

= max

{
t −

R5(b5)−1∑
�=1

ω
1/2
σ→5(�)

�ω
1/2
σ→5(R3(b3))

}

= max
{

7
12 − 0� 1

2

}
= 7

12 ;

ω
7/12
σ→5(R5(e5))

= ω
7/12
σ→5(R5(d))

= ω
7/12
σ→5(2)

= min

{R5(b5)∑
�=1

ωσ→5(�)
1/2 +ω1/2

σ→5(R5(e5))
− t�ω1/2

σ→5(R5(e5))

}

= min
{

1
2 + 1

2 − 7
12 �

1
2

}
= 5

12 �

while all other arc capacities remain the same. We update as

t7 = 7
12

A7(ρ[1]) = A6(ρ[1]) \ {(3� b)}�

Step 1.7. Time is set to t7 = 7
12 , student 3’s best school changed as b3 = a, and he no

longer has an endowment school, i.e., e3 = ∅. Time t increases until 2
3 , when further

increasing t would create a bottleneck set of students with minimum cut

K = {σ�4(2)�5(1)� c}�

Since 5(R5(b5)) = 5(R3(c)) = 5(1) ∈K and 5(R5(e5)) = 5(R5(d)) = 5(2) /∈K, and there is no other
student with this property, we have the bottleneck set as

J = {5}�
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Similar to Step 1.6, trade of c from student 3 to student 5 has continued at this step in
return of d, and it can be verified that the only updated arc capacities are

ω
2/3
σ→5(1)

= 2
3

ω
2/3
σ→5(2)

= 1
3 �

We update as

t8 = 2
3

A8(ρ[1]) = A7(ρ[1]) \ {(5� c)}�

Step 1.8. Time is set to t8 = 2
3 , student 5’s best school is updated as b5 = d, and he

no longer has an endowment school, i.e., e5 = ∅. Since no student has any endowment
school, no more trade takes place in this step, time t increases to 1, and the ex ante stable
consumption algorithm terminates with

ρ[2] =

a b c d

1 11
12

1
12 0 0

2 2
3 0 1

3 0

3 5
12

1
12 0 1

2
4 0 0 1 0

5 0 0 1
6

1
3

6 0 5
6 0 1

6

Step 2. We have the new feasible student–school set

A1(ρ[2])= {(1� a)� (1� b)� (2� a)� (2� c)� (3� a)� (3� b)� (3� c)� (3� d)�
(4� c)� (5� c)� (5� d)� (6� b)� (6� d)}�

It is easy to check that there are no feasible ex ante stable improvement cycles, and the
FDAT algorithm terminates with outcome ρ2. ♦
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Abdulkadiroğlu, Atila, Yeon-Koo Che, and Yosuke Yasuda (2011), “Resolving conflicting
preferences in school choice: The ‘Boston mechanism’ reconsidered.” American Eco-
nomic Review, 101, 399–410. [548]
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Abdulkadiroğlu, Atila and Tayfun Sönmez (2003b), “School choice: A mechanism design
approach.” American Economic Review, 93, 729–747. [543, 544, 545, 549, 551]

Alkan, Ahmet and David Gale (2003), “Stable schedule matching under revealed prefer-
ence.” Journal of Economic Theory, 112, 289–306. [547, 562]

Athanassoglou, Stergios and Jay Sethuraman (2011), “House allocation with fractional
endowments.” International Journal of Game Theory, 40, 481–513. [546, 548, 565, 566,
567, 582, 584, 585]

Azevedo, Eduardo M. and Eric B. Budish (2013), “Strategy-proofness in the large.” Re-
search Paper 13-35, Chicago Booth. [546, 572]

Balinski, Michel and Tayfun Sönmez (1999), “A tale of two mechanisms: Student place-
ment.” Journal of Economic Theory, 84, 73–94. [551]

Bogomolnaia, Anna and Hervé Moulin (2001), “A new solution to the random assign-
ment problem.” Journal of Economic Theory, 100, 295–328. [546, 548, 555, 562, 563, 567,
572, 574, 584]

Che, Yeon-Koo and Fuhito Kojima (2010), “Asymptotic equivalence of probabilistic serial
and random priority mechanisms.” Econometrica, 78, 1625–1672. [572, 573, 574]

Dubins, Lester E. and David A. Freedman (1981), “Machiavelli and the Gale–Shapley al-
gorithm.” American Mathematical Monthly, 88, 485–494. [544]

Echenique, Federico, Sangmok Lee, Matthew Shum, and M. Bumin Yenmez (2013), “The
revealed preference theory of stable and extremal stable matchings.” Econometrica, 81,
153–171. [547]

Edmonds, Jack (1965), “Paths, trees, and flowers.” Canadian Journal of Mathematics, 17,
449–467. [550]

Edmonds, Jack and Richard M. Karp (1972), “Theoretical improvements in algorithmic
efficiency for network flow problems.” Journal of the ACM, 19, 248–264. [584]

Ehlers, Lars and Alexander Westkamp (2011), “Strategy-proof tie-breaking.” Cahier de
Recherche 2011-07. [547]

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/abdulkadiroglu/pathak/roth:09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/abdulkadiroglu/sonmez:99&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/abdulkadiroglu/sonmez:03b&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/abdulkadiroglu/sonmez:03a&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/alkan/gale:03&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/athanassoglou/sethuraman:11&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/balinski/sonmez:99&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/bogomolnaia/moulin:01&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/che/kojima:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/dubins/freedman:81&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/echenique/lee/shum/yenmez:13&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/edmonds:65&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/edmonds/karp:72&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/abdulkadiroglu/pathak/roth:09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/abdulkadiroglu/pathak/roth:09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/abdulkadiroglu/sonmez:99&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/abdulkadiroglu/sonmez:03b&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/abdulkadiroglu/sonmez:03a&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/alkan/gale:03&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/athanassoglou/sethuraman:11&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/balinski/sonmez:99&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/bogomolnaia/moulin:01&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/che/kojima:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/dubins/freedman:81&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/echenique/lee/shum/yenmez:13&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/echenique/lee/shum/yenmez:13&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/edmonds:65&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/edmonds/karp:72&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4


594 Kesten and Ünver Theoretical Economics 10 (2015)

Erdil, Aytek and Haluk Ergin (2007), “Two-sided matching with indifferences.” Working
paper. [548]

Erdil, Aytek and Haluk Ergin (2008), “What’s the matter with tie-breaking? Improving
efficiency in school choice.” American Economic Review, 98, 669–689. [544, 547, 548, 563,
567, 568, 572]

Erdil, Aytek and Fuhito Kojima (2007), “Notes on stability of fractional matchings.” Study
notes. [547, 562]

Featherstone, Clayton and Muriel Niederle (2008), “Ex ante efficiency in school choice
mechanisms: An experimental investigation.” Working Paper 14618, NBER. [548]

Ford, Lester R. and Delbert R. Fulkerson (1956), “Maximal flow through a network.”
Canadian Journal of Mathematics, 8, 399–404. [583]

Gale, David and Lloyd S. Shapley (1962), “College admissions and the stability of mar-
riage.” American Mathematical Monthly, 69, 9–15. [544, 545, 546, 551, 555, 572]

Hylland, Aanund and Richard Zeckhauser (1979), “The efficient allocation of individuals
to positions.” Journal of Political Economy, 87, 293–314. [548]

Katta, Akshay-Kumar and Jay Sethuraman (2006), “A solution to the random assignment
problem on the full preference domain.” Journal of Economic Theory, 131, 231–250. [548]

Kesten, Onur (2010), “School choice with consent.” Quarterly Journal of Economics, 125,
1297–1348. [544, 548, 572]

Kojima, Fuhito and Mihai Manea (2010), “Incentives in the probabilistic serial mecha-
nism.” Journal of Economic Theory, 145, 106–123. [546, 550, 572]

Manjunath, Vikram (2013), “Stability and the core of probabilistic marriage problems.”
Working paper, University of Montreal. [547]

Manjunath, Vikram (2014), “Markets for fractional partnerships.” Working paper, Boston
College. [547]

McVitie, David G. and Leslie B. Wilson (1971), “The stable marriage problem.” Commu-
nications of the ACM, 14, 486–490. [560]

Pathak, Parag A. and Jay Sethuraman (2011), “Lotteries in student assignment: An equiv-
alence result.” Theoretical Economics, 6, 1–17. [547]

Roth, Alvin E. (1982), “The economics of matching: Stability and incentives.” Mathemat-
ics of Operations Research, 7, 617–628. [544, 555]

Roth, Alvin E., Uriel G. Rothblum, and John H. Vande Vate (1993), “Stable matchings,
optimal assignments, and linear programming.” Mathematics of Operations Research,
18, 803–828. [547, 551]

Teo, Chung-Piaw and Jay Sethuraman (1998), “The geometry of fractional stable match-
ings and its applications.” Mathematics of Operations Research, 23, 874–891. [547]

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/erdil/ergin:08&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/ford/fulkerson:56&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/gale/shapley:62&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/hylland/zeckhauser:79&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/katta/sethuraman:06&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/kesten:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/kojima/manea:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/mcvitie/wilson:71&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/pathak/sethuraman:11&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/roth:82b&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/roth/rothblum/vandevate:93&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/teo/sethuraman:98&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/erdil/ergin:08&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/ford/fulkerson:56&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/gale/shapley:62&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/hylland/zeckhauser:79&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/katta/sethuraman:06&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/kesten:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/kojima/manea:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/mcvitie/wilson:71&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:33/pathak/sethuraman:11&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/roth:82b&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/roth/rothblum/vandevate:93&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/roth/rothblum/vandevate:93&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/teo/sethuraman:98&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4


Theoretical Economics 10 (2015) A theory of school-choice lotteries 595

von Neumann, John (1953), “A certain zero-sum two-person game equivalent to the op-
timal assignment problem.” In Contributions to the Theory of Games, Vol. 2 (Harold W.
Kuhn and Albert W. Tucker, eds.), Princeton University Press, Princeton, New Jersey.
[550]

Yılmaz, Özgür (2009), “Random assignment under weak preferences.” Games and Eco-
nomic Behavior, 66, 546–558. [548, 565]

Yılmaz, Özgür (2010), “The probabilistic serial mechanism with private endowments.”
Games and Economic Behavior, 69, 475–491. [548, 565]

Submitted 2013-6-7. Final version accepted 2014-5-19. Available online 2014-5-24.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:37/vonneumann:53&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:38/yilmaz:09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/yilmaz:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:37/vonneumann:53&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:37/vonneumann:53&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:38/yilmaz:09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/yilmaz:10&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%3C543%3AATOSL%3E2.0.CO%3B2-4

	Introduction
	Related literature
	The model
	Properties
	Previous notions of fairness
	A new notion: Ex ante stability
	Pareto efﬁciency

	Strongly ex ante stable school choice
	Fractional deferred-acceptance mechanism
	Properties of the FDA mechanism

	Ex ante stable school choice
	Ex ante stability and constrained ordinal efﬁciency
	Ex ante stable fraction trading
	Properties of the FDAT mechanism
	The FDAT mechanism vs. probabilistic serial mechanism

	Simulations
	Incentives
	Incentives under FDA in a large market

	Concluding comments
	Appendix A: How does the FDA algorithm work when there is a rejection cycle?
	Appendix B: Proofs of the results regarding the FDA mechanism
	Appendix C: Proof of Proposition 5
	Appendix D: The EASC algorithm
	Appendix E: How is the EASC algorithm embedded in the FDAT algorithm?
	References

